
python-icat Documentation
Release 0.20.1

Rolf Krahl

Nov 04, 2021





Contents

1 Parts of the documentation 3

2 Indices and tables 99

Python Module Index 101

Index 103

i



ii



python-icat Documentation, Release 0.20.1

The ICAT server is a metadata catalogue to support Large Facility experimental data, linking all aspects of the
research chain from proposal through to publication. It provides SOAP and RESTful web service interfaces to an
underlying database.

python-icat is a Python package that provides a collection of modules for writing programs that access an ICAT
service using the SOAP interface. It is based on Suds and extends it with ICAT specific features.

The most important features include:

• Provide clients for ICAT and IDS.

• Keep the general structure and flexibility of Suds.

• Define Python classes to represent the entity object types from the ICAT schema.

• Read configuration from various sources, such as command line arguments, environment variables, and
configuration files.

• Build JPQL expressions to search the ICAT server.

• Dump and restore ICAT content to and from a flat file. This is suitable as a general ingestion tool to ICAT.

Contents 1

http://www.icatproject.org/


python-icat Documentation, Release 0.20.1

2 Contents



CHAPTER 1

Parts of the documentation

1.1 Tutorial

This tutorial provides a step by step introduction to the usage of python-icat. It intents to give an overview of
python-icat’s most noteworthy features. You need to have python-icat installed to run the examples. You also need
a running ICAT server and IDS server to connect to. Some examples in the tutorial assume to have root access
and modify data, therefore it is not advisable to use a production ICAT. Rather setup a dedicated test ICAT to run
the tutorial.

During the tutorial you will create some simple Python scripts and other files in your local file system. It is
advisable to create a new empty folder for that purpose and change into that:

$ mkdir python-icat-tutorial
$ cd python-icat-tutorial

Some of the more advanced tutorial sections will require some example content in the ICAT server. You’ll need
the file icatdump-4.10.yaml to set it up. This file can be found in the doc/examples directory in the python-icat
source distribution.

The tutorial assumes some basic knowledge in programming with Python as well as some basic understanding of
ICAT. The tutorial contains the following sections:

1.1.1 Hello World!

The minimal task to start any program environment is to print a simple message. The minimal interaction with an
ICAT server is to connect to it and get its version. We’ll combine both in a simple program:

#! /usr/bin/python

from __future__ import print_function
import icat.client

url = "https://icat.example.com:8181"
client = icat.client.Client(url)
print("Connect to %s\nICAT version %s" % (url, client.apiversion))

If you run this script, you should get something like the following as output:

3



python-icat Documentation, Release 0.20.1

$ python hello.py
Connect to https://icat.example.com:8181
ICAT version 4.10

The constructor of icat.client.Client takes the URL of the ICAT service as argument. It contacts the
ICAT server, queries the version and stores the result to the attribute apiversion of the client object. Obviously,
you’ll need to change the variable url in this example to point to your ICAT server.

If your ICAT server does not have a trusted SSL certificate you may get (depending on your Python version) an
error instead:

$ python hello.py
Traceback (most recent call last):

...
urllib.error.URLError: <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate
→˓verify failed (_ssl.c:548)>

In this case, you may either install a trusted certificate in your server now or modify your hello program and add
a flag checkCert=False to the constructor call like this:

#! /usr/bin/python

from __future__ import print_function
import icat.client

url = "https://icat.example.com:8181"
client = icat.client.Client(url, checkCert=False)
print("Connect to %s\nICAT version %s" % (url, client.apiversion))

The future statement at the beginning of the example is only needed to compile print as a built-in function rather
than a statement. We’ll use it throughout the tutorial to ensure that the examples will work with Python 2 as well
as with Python 3.

The class icat.client.Client plays the central role in python-icat programs. Most of your code will deal
with objects of this class. For this reason, the class is imported by default in the icat package. The above
example could also be written as:

#! /usr/bin/python

from __future__ import print_function
import icat

url = "https://icat.example.com:8181"
client = icat.Client(url)
print("Connect to %s\nICAT version %s" % (url, client.apiversion))

1.1.2 Configuration

The example from the last section had the URL of the ICAT service hard coded in the program. This is certainly
not the best way to do it. You could make it a command line argument, but then you would need to indicate it
each time you run the program, which is also not very convenient. The module icat.config has been created
to solve this. It manages several configuration variables that most ICAT client programs need.

Let’s modify the example program as follows:

#! /usr/bin/python

from __future__ import print_function
import icat
import icat.config

(continues on next page)

4 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

(continued from previous page)

config = icat.config.Config(needlogin=False, ids=False)
client, conf = config.getconfig()
print("Connect to %s\nICAT version %s" % (conf.url, client.apiversion))

If we run this without any command line arguments, we get an error:

$ python config.py
Traceback (most recent call last):

...
icat.exception.ConfigError: Config option 'url' not given.

Apparently, there is a configuration option named url and we didn’t specify it. Let’s have a look on the command
line options, that this program now accepts:

$ python config.py -h
usage: config.py [-h] [-c CONFIGFILE] [-s SECTION] [-w URL]

[--no-check-certificate] [--http-proxy HTTP_PROXY]
[--https-proxy HTTPS_PROXY] [--no-proxy NO_PROXY]

optional arguments:
-h, --help show this help message and exit
-c CONFIGFILE, --configfile CONFIGFILE

config file
-s SECTION, --configsection SECTION

section in the config file
-w URL, --url URL URL to the web service description
--no-check-certificate

don't verify the server certificate
--http-proxy HTTP_PROXY

proxy to use for http requests
--https-proxy HTTPS_PROXY

proxy to use for https requests
--no-proxy NO_PROXY list of exclusions for proxy use

So there is a command line option -w URL. Let’s try:

$ python config.py -w 'https://icat.example.com:8181'
Connect to https://icat.example.com:8181
ICAT version 4.10

(Again, you may need to add the --no-check-certificate flag to the command line if your ICAT server
does not have a trusted SSL certificate.) This does the job. But as mentioned above, it’s not very convenient having
to indicate the URL each time you run the program. But in the command line arguments, there is also a mention
of a configuration file. Create a text file named icat.cfg in the current working directory with the following
content:

[myicat]
url = https://icat.example.com:8181
# uncomment, if your server does not have a trusted certificate
#checkCert = No

Now you can do the following:

$ python config.py -s myicat
Connect to https://icat.example.com:8181
ICAT version 4.10

The command line option -s SECTION selects a section in the configuration file to read options from.

python-icat is not only a client for ICAT, but also for IDS. Since both may be on a different server, we need to tell
python-icat also about the URL to IDS. Modify the example program to read as:

1.1. Tutorial 5



python-icat Documentation, Release 0.20.1

#! /usr/bin/python

from __future__ import print_function
import icat
import icat.config

config = icat.config.Config(needlogin=False, ids="optional")
client, conf = config.getconfig()
print("Connect to %s\nICAT version %s" % (conf.url, client.apiversion))
if conf.idsurl:

print("Connect to %s\nIDS version %s"
% (conf.idsurl, client.ids.apiversion))

else:
print("No IDS configured")

If you run this in the same way as above, you’ll get:

$ python config-with-ids.py -s myicat
Connect to https://icat.example.com:8181
ICAT version 4.10
No IDS configured

But if you indicate the URL to IDS with the command line option --idsurl, or even better in the configuration
file as follows:

[myicat]
url = https://icat.example.com:8181
idsurl = https://icat.example.com:8181
# uncomment, if your server does not have a trusted certificate
#checkCert = No

You’ll get something like:

$ python config-with-ids.py -s myicat
Connect to https://icat.example.com:8181
ICAT version 4.10
Connect to https://icat.example.com:8181
IDS version 1.10.1

1.1.3 Authentication and login

Until now, we only connected the ICAT server to query its version. This doesn’t require a login to the server
and hence the flag needlogin=False in the constructor call of icat.config.Config in our example
program. If we leave this flag out, we get a bunch of new configuration variables. Consider the following example
program:

#! /usr/bin/python

from __future__ import print_function
import icat
import icat.config

config = icat.config.Config(ids="optional")
client, conf = config.getconfig()
client.login(conf.auth, conf.credentials)

print("Login to %s was successful." % (conf.url))
print("User: %s" % (client.getUserName()))

Let’s check the available command line options now:

6 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

$ python login.py -h
usage: login.py [-h] [-c CONFIGFILE] [-s SECTION] [-w URL] [--idsurl IDSURL]

[--no-check-certificate] [--http-proxy HTTP_PROXY]
[--https-proxy HTTPS_PROXY] [--no-proxy NO_PROXY] [-a AUTH]
[-u USERNAME] [-P] [-p PASSWORD]

optional arguments:
-h, --help show this help message and exit
-c CONFIGFILE, --configfile CONFIGFILE

config file
-s SECTION, --configsection SECTION

section in the config file
-w URL, --url URL URL to the web service description
--idsurl IDSURL URL to the ICAT Data Service
--no-check-certificate

don't verify the server certificate
--http-proxy HTTP_PROXY

proxy to use for http requests
--https-proxy HTTPS_PROXY

proxy to use for https requests
--no-proxy NO_PROXY list of exclusions for proxy use
-a AUTH, --auth AUTH authentication plugin
-u USERNAME, --user USERNAME

username
-P, --prompt-pass prompt for the password
-p PASSWORD, --pass PASSWORD

password

Now call this program indicating the name of the authentication plugin and a user name:

$ python login.py -s myicat -a db -u jdoe
Password:
Login to https://icat.example.com:8181 was successful.
User: db/jdoe

Note that the program prompted us for a password, since we didn’t provide one. Of course you need to specify
an authentication plugin, user name, and password that is actually configured in your ICAT. Furthermore, the user
name printed by the program may be different from the one indicated in the command line. This depends on the
configuration of the authentication plugin in your ICAT. It is common praxis to prefix the user name with the name
of the authentication plugin as shown in this example.

Note: For this tutorial we assume that the root user in the ICAT server has the user name root and is configured in
the simple authenticator and that there are two users with name jdoe and nbour configured in the db authenticator.
If this is not the case in your ICAT, you’ll need to adapt the examples accordingly.

All configuration variables aside from configFile and configSection can be set in the configuration file. Edit your
icat.cfg file to read:

[myicat_jdoe]
url = https://icat.example.com:8181
auth = db
username = jdoe
password = secret
idsurl = https://icat.example.com:8181
# uncomment, if your server does not have a trusted certificate
#checkCert = No

You should protect this file from unauthorized read access if you store passwords in it. Now you can do:

1.1. Tutorial 7



python-icat Documentation, Release 0.20.1

$ python login.py -s myicat_jdoe
Login to https://icat.example.com:8181 was successful.
User: db/jdoe

Command line options override the settings in the configuration file. This way, you can still log in as another user
not configured in the file:

$ python login.py -s myicat_jdoe -u nbour
Password:
Login to https://icat.example.com:8181 was successful.
User: db/nbour

You might have noticed that the program again prompted us for a password even though there is one set in the
config file. The icat.config module is smart enough to assume that if we overrode the user name on the
command line, the password in the config file will likely not be valid for that user.

Configuration files can have many sections. It may come handy to be able to quickly switch between different
users to log into the ICAT. Edit icat.cfg again to read as follows:

[myicat_root]
url = https://icat.example.com:8181
auth = simple
username = root
password = secret
idsurl = https://icat.example.com:8181
# uncomment, if your server does not have a trusted certificate
#checkCert = No

[myicat_jdoe]
url = https://icat.example.com:8181
auth = db
username = jdoe
password = secret
idsurl = https://icat.example.com:8181
#checkCert = No

[myicat_nbour]
url = https://icat.example.com:8181
auth = db
username = nbour
password = secret
idsurl = https://icat.example.com:8181
#checkCert = No

We shall use some of this configuration in the following sections of the tutorial. Do not forget to adapt the URLs,
the authenticator names, and the passwords to what is configured in your ICAT.

1.1.4 Creating stuff in the ICAT server

The ICAT server is pretty useless if it is void of content. So let’s start creating some objects.

We could do it by writing and running a small Python script each time as in the last sections. But python-icat may
also be used interactively at the Python prompt, so let’s try this out:

$ python -i login.py -s myicat_root
Login to https://icat.example.com:8181 was successful.
User: simple/root
>>> client.search("SELECT f FROM Facility f")
[]

8 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

The -i command line option tells Python to enter interactive mode after executing the login.py script from
last section.

Creating simple objects

The search() result shows that there is no Facility object in ICAT. Let’s create one. In the same session,
type:

>>> f1 = client.new("facility")
>>> f1.name = "Fac1"
>>> f1.fullName = "Facility 1"
>>> f1.id = client.create(f1)

The new() method instantiates a new Facility object locally in the client. We set some of the attributes of
this new object. Finally, we call create() to create it in the ICAT server. The return value is the ID of the new
Facility object in ICAT. The result can be verified by repeating the search from above:

>>> client.search("SELECT f FROM Facility f")
[(facility){

createId = "simple/root"
createTime = 2019-11-26 12:39:18+01:00
id = 1
modId = "simple/root"
modTime = 2019-11-26 12:39:18+01:00
fullName = "Facility 1"
name = "Fac1"

}]

The same result could also have been obtained slightly differently: the new() method optionally accepts keyword
arguments to set the attributes of the new object. Furthermore, the Entity object itself also has a create()
method to create this object in the ICAT server. We thus could achieve the same as above like this:

>>> f2 = client.new("facility", name="Fac2", fullName="Facility 2")
>>> f2.create()

To verify the result, we check again:

>>> client.search("SELECT f FROM Facility f")
[(facility){

createId = "simple/root"
createTime = 2019-11-26 12:39:18+01:00
id = 1
modId = "simple/root"
modTime = 2019-11-26 12:39:18+01:00
fullName = "Facility 1"
name = "Fac1"

}, (facility){
createId = "simple/root"
createTime = 2019-11-26 12:40:02+01:00
id = 2
modId = "simple/root"
modTime = 2019-11-26 12:40:02+01:00
fullName = "Facility 2"
name = "Fac2"

}]

Relationships to other objects

Most objects in the ICAT are related to other objects. Let’s first retrieve again the first facility created above using
the get() method:

1.1. Tutorial 9



python-icat Documentation, Release 0.20.1

>>> f1 = client.get("Facility", 1)

The arguments are the name of the entity object class and the ID of the object to fetch. You might need to adapt
that second argument, if the ICAT server attributed a different ID to your first facility, see the output from the
search() call above.

Now consider the following example:

>>> pt1 = client.new("parameterType")
>>> pt1.name = "Test parameter type 1"
>>> pt1.units = "pct"
>>> pt1.applicableToDataset = True
>>> pt1.valueType = "NUMERIC"
>>> pt1.facility = f1
>>> pt1.create()

The ParameterType has a many to one relationship to a Facility. This relationship is established by setting
the corresponding attribute in the ParameterType object before creating it in the ICAT. The Facility must
already exist at this point.

On the other hand, there is also a one to many relationship between ParameterType and
PermissibleStringValue in the ICAT schema. Let’s create a ParameterType with string values:

>>> pt2 = client.new("parameterType")
>>> pt2.name = "Test parameter type 2"
>>> pt2.units = "N/A"
>>> pt2.applicableToDataset = True
>>> pt2.valueType = "STRING"
>>> pt2.facility = f1
>>> for v in ["buono", "brutto", "cattivo"]:
... psv = client.new("permissibleStringValue", value=v)
... pt2.permissibleStringValues.append(psv)
...
>>> pt2.create()

The permissibleStringValues attribute of ParameterType is a list. We may add
new PermissibleStringValue instances to this list before creating the object. The
PermissibleStringValue instances should not yet exist in ICAT at this point, they will be created
together with the ParameterType object.

We can verify this by searching for the newly created objects:

>>> query = "SELECT pt FROM ParameterType pt INCLUDE pt.facility, pt.
→˓permissibleStringValues"
>>> client.search(query)
[(parameterType){

createId = "simple/root"
createTime = 2019-11-26 12:40:54+01:00
id = 1
modId = "simple/root"
modTime = 2019-11-26 12:40:54+01:00
applicableToDataCollection = False
applicableToDatafile = False
applicableToDataset = True
applicableToInvestigation = False
applicableToSample = False
enforced = False
facility =

(facility){
createId = "simple/root"
createTime = 2019-11-26 12:39:18+01:00
id = 1

(continues on next page)

10 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

(continued from previous page)

modId = "simple/root"
modTime = 2019-11-26 12:39:18+01:00
fullName = "Facility 1"
name = "Fac1"

}
name = "Test parameter type 1"
units = "pct"
valueType = "NUMERIC"
verified = False

}, (parameterType){
createId = "simple/root"
createTime = 2019-11-26 12:41:30+01:00
id = 2
modId = "simple/root"
modTime = 2019-11-26 12:41:30+01:00
applicableToDataCollection = False
applicableToDatafile = False
applicableToDataset = True
applicableToInvestigation = False
applicableToSample = False
enforced = False
facility =

(facility){
createId = "simple/root"
createTime = 2019-11-26 12:39:18+01:00
id = 1
modId = "simple/root"
modTime = 2019-11-26 12:39:18+01:00
fullName = "Facility 1"
name = "Fac1"

}
name = "Test parameter type 2"
permissibleStringValues[] =

(permissibleStringValue){
createId = "simple/root"
createTime = 2019-11-26 12:41:30+01:00
id = 1
modId = "simple/root"
modTime = 2019-11-26 12:41:30+01:00
value = "buono"

},
(permissibleStringValue){

createId = "simple/root"
createTime = 2019-11-26 12:41:30+01:00
id = 2
modId = "simple/root"
modTime = 2019-11-26 12:41:30+01:00
value = "brutto"

},
(permissibleStringValue){

createId = "simple/root"
createTime = 2019-11-26 12:41:30+01:00
id = 3
modId = "simple/root"
modTime = 2019-11-26 12:41:30+01:00
value = "cattivo"

},
units = "N/A"
valueType = "STRING"
verified = False

}]

1.1. Tutorial 11



python-icat Documentation, Release 0.20.1

As expected, we get a list of two ParameterType objects as result, one of them related to a couple of
PermissibleStringValue objects that have been created at the same time as the related ParameterType
object.

Access rules

Until now, we connected the ICAT server as the root user. Let’s try what happens if we choose another user:

$ python -i login.py -s myicat_jdoe
Login to https://icat.example.com:8181 was successful.
User: db/jdoe
>>> client.search("SELECT pt FROM ParameterType pt INCLUDE pt.facility")
[]

We can’t get any of the objects created above from ICAT. The reason is that we don’t have the permission to access
these objects. ICAT has a default deny access policy: only the root user has read and write access to everything,
all other users get only access, if there is a rule that explicitely allows it.

Let’s add some rules to allow public read access to some object types. Connect again as root and enter:

$ python -i login.py -s myicat_root
Login to https://icat.example.com:8181 was successful.
User: simple/root
>>> publicTables = [ "Application", "DatafileFormat", "DatasetType",
... "Facility", "FacilityCycle", "Instrument",
... "InvestigationType", "ParameterType",
... "PermissibleStringValue", "SampleType", ]
>>> queries = [ "SELECT o FROM %s o" % t for t in publicTables ]
>>> client.createRules("R", queries)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

The createRules() method takes an access mode and a list of search queries (and optionally a group) as
arguments. It will add rules that allow access to all objects yielded by a search for any of the queries. The access
mode is "R" for read access in this example. createRules() is a convenience method in python-icat roughly
equivalent to:

>>> rules = []
>>> for w in queries:
... r = client.new("rule", crudFlags="R", what=w)
... rules.append(r)
...
>>> client.createMany(rules)

If we now try again to search for the objects as normal user, we get:

$ python -i login.py -s myicat_jdoe
Login to https://icat.example.com:8181 was successful.
User: db/jdoe
>>> client.search("SELECT pt FROM ParameterType pt INCLUDE pt.facility")
[(parameterType){

createId = "simple/root"
createTime = 2019-11-26 12:40:54+01:00
id = 1
modId = "simple/root"
modTime = 2019-11-26 12:40:54+01:00
applicableToDataCollection = False
applicableToDatafile = False
applicableToDataset = True
applicableToInvestigation = False
applicableToSample = False
enforced = False

(continues on next page)

12 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

(continued from previous page)

facility =
(facility){

createId = "simple/root"
createTime = 2019-11-26 12:39:18+01:00
id = 1
modId = "simple/root"
modTime = 2019-11-26 12:39:18+01:00
fullName = "Facility 1"
name = "Fac1"

}
name = "Test parameter type 1"
units = "pct"
valueType = "NUMERIC"
verified = False

}, (parameterType){
createId = "simple/root"
createTime = 2019-11-26 12:41:30+01:00
id = 2
modId = "simple/root"
modTime = 2019-11-26 12:41:30+01:00
applicableToDataCollection = False
applicableToDatafile = False
applicableToDataset = True
applicableToInvestigation = False
applicableToSample = False
enforced = False
facility =

(facility){
createId = "simple/root"
createTime = 2019-11-26 12:39:18+01:00
id = 1
modId = "simple/root"
modTime = 2019-11-26 12:39:18+01:00
fullName = "Facility 1"
name = "Fac1"

}
name = "Test parameter type 2"
units = "N/A"
valueType = "STRING"
verified = False

}]

1.1.5 Working with objects in the ICAT server

In the previous section of this tutorial, we created two Facility objects:

$ python -i login.py -s myicat_root
Login to https://icat.example.com:8181 was successful.
User: simple/root
>>> client.search("SELECT f FROM Facility f")
[(facility){

createId = "simple/root"
createTime = 2019-11-26 12:39:18+01:00
id = 1
modId = "simple/root"
modTime = 2019-11-26 12:39:18+01:00
fullName = "Facility 1"
name = "Fac1"

}, (facility){

(continues on next page)

1.1. Tutorial 13



python-icat Documentation, Release 0.20.1

(continued from previous page)

createId = "simple/root"
createTime = 2019-11-26 12:40:02+01:00
id = 2
modId = "simple/root"
modTime = 2019-11-26 12:40:02+01:00
fullName = "Facility 2"
name = "Fac2"

}]

Let’s see what we can do with these objects.

Editing the attributes of objects

We can edit the attributes of existing objects by assigning values to the corresponding Entity object. To write
these changes back into ICAT, we can either call the icat.client.Client.update() method, or simply
invoke the object’s own update() method instead.

Let’s loop over our Facility objects to add some new attributes and to edit existing ones:

>>> for facility in client.search("SELECT f FROM Facility f"):
... facility.description = "An example facility"
... facility.daysUntilRelease = 1826
... facility.fullName = "%s Facility" % facility.name
... client.update(facility)
...

We can verify the changes by performing another search:

>>> client.search("SELECT f FROM Facility f")
[(facility){

createId = "simple/root"
createTime = 2019-11-26 12:39:18+01:00
id = 1
modId = "simple/root"
modTime = 2019-11-26 12:48:46+01:00
daysUntilRelease = 1826
description = "An example facility"
fullName = "Fac1 Facility"
name = "Fac1"

}, (facility){
createId = "simple/root"
createTime = 2019-11-26 12:40:02+01:00
id = 2
modId = "simple/root"
modTime = 2019-11-26 12:48:46+01:00
daysUntilRelease = 1826
description = "An example facility"
fullName = "Fac2 Facility"
name = "Fac2"

}]

To remove a particular attribute value, we usually just have to assign None to it:

>>> for facility in client.search("SELECT f FROM Facility f"):
... facility.description = None
... facility.update()
...

If we search again now, the descriptions are gone:

14 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

>>> client.search("SELECT f FROM Facility f")
[(facility){

createId = "simple/root"
createTime = 2019-11-26 12:39:18+01:00
id = 1
modId = "simple/root"
modTime = 2019-11-26 12:49:28+01:00
daysUntilRelease = 1826
fullName = "Fac1 Facility"
name = "Fac1"

}, (facility){
createId = "simple/root"
createTime = 2019-11-26 12:40:02+01:00
id = 2
modId = "simple/root"
modTime = 2019-11-26 12:49:28+01:00
daysUntilRelease = 1826
fullName = "Fac2 Facility"
name = "Fac2"

}]

Copying objects

By calling the copy() method on an existing object, we can create a new object that has all attributes set to a
copy of the corresponding values of the original object. The relations are copied by reference, i.e. the original and
the copy refer to the same related object.

To demonstrate this, we use one of the Facility objects we created earlier, including its referenced
ParameterType objects:

>>> fac = client.get("Facility f INCLUDE f.parameterTypes", 1)
>>> print(fac)
(facility){

createId = "simple/root"
createTime = 2019-11-26 12:39:18+01:00
id = 1
modId = "simple/root"
modTime = 2019-11-26 12:49:28+01:00
daysUntilRelease = 1826
fullName = "Fac1 Facility"
name = "Fac1"
parameterTypes[] =

(parameterType){
createId = "simple/root"
createTime = 2019-11-26 12:40:54+01:00
id = 1
modId = "simple/root"
modTime = 2019-11-26 12:40:54+01:00
applicableToDataCollection = False
applicableToDatafile = False
applicableToDataset = False
applicableToInvestigation = False
applicableToSample = False
enforced = False
name = "Test parameter type 1"
units = "pct"
valueType = "NUMERIC"
verified = False

},
(parameterType){

(continues on next page)

1.1. Tutorial 15



python-icat Documentation, Release 0.20.1

(continued from previous page)

createId = "simple/root"
createTime = 2019-11-26 12:41:30+01:00
id = 2
modId = "simple/root"
modTime = 2019-11-26 12:41:30+01:00
applicableToDataCollection = False
applicableToDatafile = False
applicableToDataset = False
applicableToInvestigation = False
applicableToSample = False
enforced = False
name = "Test parameter type 2"
units = "N/A"
valueType = "STRING"
verified = False

},
}

Now we create a copy of this object and modify its attributes. The attributes of the original object remain un-
changed. However, any changes to the referenced ParameterType objects are reflected in both the copy and
the original:

>>> facc = fac.copy()
>>> print(facc.name)
Fac1
>>> print(facc.parameterTypes[0].name)
Test parameter type 1
>>> facc.name = "Fac0"
>>> facc.parameterTypes[0].name = "Test parameter type 0"
>>> print(fac.name)
Fac1
>>> print(fac.parameterTypes[0].name)
Test parameter type 0

When working with objects from ICAT, it can be a bit cumbersome to keep the (possibly large) tree of related ob-
jects in local memory. If you only need to keep the object’s attributes, you can use the truncateRelations()
method to delete all references to other objects from this object. Note that this is a local operation on the object in
the client only. It does neither affect the corresponding object at the ICAT server, nor any copies of the object:

>>> fac.truncateRelations()
>>> print(fac)
(facility){

createId = "simple/root"
createTime = 2019-11-26 12:39:18+01:00
id = 1
modId = "simple/root"
modTime = 2019-11-26 12:49:28+01:00
daysUntilRelease = 1826
fullName = "Fac1 Facility"
name = "Fac1"

}
>>> print(facc)
(facility){

createId = None
createTime = None
id = 1
modId = None
modTime = None
daysUntilRelease = 1826
description = None
fullName = "Fac1 Facility"

(continues on next page)

16 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

(continued from previous page)

name = "Fac0"
parameterTypes[] =

(parameterType){
createId = "simple/root"
createTime = 2019-11-26 12:40:54+01:00
id = 1
modId = "simple/root"
modTime = 2019-11-26 12:40:54+01:00
applicableToDataCollection = False
applicableToDatafile = False
applicableToDataset = False
applicableToInvestigation = False
applicableToSample = False
enforced = False
name = "Test parameter type 0"
units = "pct"
valueType = "NUMERIC"
verified = False

},
(parameterType){

createId = "simple/root"
createTime = 2019-11-26 12:41:30+01:00
id = 2
modId = "simple/root"
modTime = 2019-11-26 12:41:30+01:00
applicableToDataCollection = False
applicableToDatafile = False
applicableToDataset = False
applicableToInvestigation = False
applicableToSample = False
enforced = False
name = "Test parameter type 2"
units = "N/A"
valueType = "STRING"
verified = False

},
url = None

}

1.1.6 Searching for objects in the ICAT server

There are many ways to search for objects in ICAT using python-icat. Until now, we have seen how we can
manually write JPQL query strings and pass them to the search() method:

$ python -i login.py -s myicat_root
Login to https://icat.example.com:8181 was successful.
User: simple/root
>>> client.search("SELECT f FROM Facility f INCLUDE f.parameterTypes LIMIT 1,1")
[(facility){

createId = "simple/root"
createTime = 2019-11-26 12:40:02+01:00
id = 2
modId = "simple/root"
modTime = 2019-11-26 12:49:28+01:00
daysUntilRelease = 1826
fullName = "Fac2 Facility"
name = "Fac2"

}]

However, as our queries get more complicated, this can be a bit inconvenient. The icat.query module provides

1.1. Tutorial 17



python-icat Documentation, Release 0.20.1

an easier and less error-prone way to build queries. In addition, the icat.client.Client class has some
useful methods as well.

But before we get into that, we will make sure that we actually have some well defined and rich content to search
for. Run the following commands at the command line:

$ wipeicat -s myicat_root
$ icatingest -s myicat_root -i icatdump-4.10.yaml

wipeicat and icatingest are two scripts that get installed with python-icat. Depending on the situation, these scripts
may be installed either with or without a trailing .py extension. The file icatdump-4.10.yaml can be found in the
python-icat source distribution. The first command deletes all content from the ICAT server that we may have
created in the previous sections. The second command reads the icatdump-4.10.yaml file and creates all objects
listed therein in the ICAT server.

Note: As the name suggests, the content in icatdump-4.10.yaml requires an ICAT server version 4.10 or newer.
If you are using an older ICAT, you may just as well use the icatdump-4.7.yaml or icatdump-4.4.yaml file instead,
matching the respective older versions. For the sake of this tutorial, the difference does not matter.

Note: The search results in the following examples may depend on the user you log into ICAT as, because not all
users have read access to all data. The examples assume that your user name (as displayed by the login.py script)
is db/nbour. If that does not work for you, you may as well log in as root.

Building advanced queries

The icat.query module provides the Query class. We need to import it first:

$ python -i login.py -s myicat_nbour
Login to https://icat.example.com:8181 was successful.
User: db/nbour
>>> from icat.query import Query

Now let’s have a look at some examples. We start with a simple query that lists all investigations:

>>> query = Query(client, "Investigation")
>>> print(query)
SELECT o FROM Investigation o
>>> client.search(query)
[(investigation){

createId = "simple/root"
createTime = 2020-02-05 16:49:27+01:00
id = 1
modId = "simple/root"
modTime = 2020-02-05 16:49:27+01:00
name = "08100122-EF"
startDate = 2008-03-13 11:39:42+01:00
title = "Durol single crystal"
visitId = "1.1-P"

}, (investigation){
createId = "simple/root"
createTime = 2020-02-05 16:49:28+01:00
id = 2
modId = "simple/root"
modTime = 2020-02-05 16:49:28+01:00
endDate = 2010-10-12 17:00:00+02:00
name = "10100601-ST"
startDate = 2010-09-30 12:27:24+02:00

(continues on next page)

18 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

(continued from previous page)

title = "Ni-Mn-Ga flat cone"
visitId = "1.1-N"

}, (investigation){
createId = "simple/root"
createTime = 2020-02-05 16:49:33+01:00
id = 3
modId = "simple/root"
modTime = 2020-02-05 16:49:33+01:00
endDate = 2012-08-06 03:10:08+02:00
name = "12100409-ST"
startDate = 2012-07-26 17:44:24+02:00
title = "NiO SC OF1 JUH HHL"
visitId = "1.1-P"

}]

In order to search for a particular investigation, we may add an appropriate condition. The conditions argument to
Query should be a mapping of attribute names to conditions on that attribute:

>>> query = Query(client, "Investigation", conditions={"name": "= '10100601-ST'"})
>>> print(query)
SELECT o FROM Investigation o WHERE o.name = '10100601-ST'
>>> client.search(query)
[(investigation){

createId = "simple/root"
createTime = 2020-02-05 16:49:28+01:00
id = 2
modId = "simple/root"
modTime = 2020-02-05 16:49:28+01:00
endDate = 2010-10-12 17:00:00+02:00
name = "10100601-ST"
startDate = 2010-09-30 12:27:24+02:00
title = "Ni-Mn-Ga flat cone"
visitId = "1.1-N"

}]

We may also include related objects in the search results:

>>> query = Query(client, "Investigation", conditions={"name": "= '10100601-ST'"},
→˓includes=["datasets"])
>>> print(query)
SELECT o FROM Investigation o WHERE o.name = '10100601-ST' INCLUDE o.datasets
>>> client.search(query)
[(investigation){

createId = "simple/root"
createTime = 2020-02-05 16:49:28+01:00
id = 2
modId = "simple/root"
modTime = 2020-02-05 16:49:28+01:00
datasets[] =

(dataset){
createId = "simple/root"
createTime = 2020-02-05 16:49:29+01:00
id = 3
modId = "simple/root"
modTime = 2020-02-05 16:49:29+01:00
complete = False
endDate = 2010-10-01 08:17:48+02:00
name = "e208339"
startDate = 2010-09-30 12:27:24+02:00

},
(dataset){

(continues on next page)

1.1. Tutorial 19



python-icat Documentation, Release 0.20.1

(continued from previous page)

createId = "simple/root"
createTime = 2020-02-05 16:49:32+01:00
id = 4
modId = "simple/root"
modTime = 2020-02-05 16:49:32+01:00
complete = False
endDate = 2010-10-05 10:32:21+02:00
name = "e208341"
startDate = 2010-10-02 04:00:21+02:00

},
(dataset){

createId = "simple/root"
createTime = 2020-02-05 16:49:32+01:00
id = 5
modId = "simple/root"
modTime = 2020-02-05 16:49:32+01:00
complete = False
endDate = 2010-10-12 17:00:00+02:00
name = "e208342"
startDate = 2010-10-09 07:00:00+02:00

},
endDate = 2010-10-12 17:00:00+02:00
name = "10100601-ST"
startDate = 2010-09-30 12:27:24+02:00
title = "Ni-Mn-Ga flat cone"
visitId = "1.1-N"

}]

python-icat supports the use of some JPQL functions when specifying which attribute a condition should be
applied to. Consider the following query:

>>> query = Query(client, "Investigation", conditions={"LENGTH(title)": "= 18"})
>>> print(query)
SELECT o FROM Investigation o WHERE LENGTH(o.title) = 18
>>> client.search(query)
[(investigation){

createId = "simple/root"
createTime = 2021-10-05 14:09:57+00:00
id = 430
modId = "simple/root"
modTime = 2021-10-05 14:09:57+00:00
doi = "00.0815/inv-00601"
endDate = 2010-10-12 15:00:00+00:00
name = "10100601-ST"
startDate = 2010-09-30 10:27:24+00:00
title = "Ni-Mn-Ga flat cone"
visitId = "1.1-N"

}, (investigation){
createId = "simple/root"
createTime = 2021-10-05 14:09:58+00:00
id = 431
modId = "simple/root"
modTime = 2021-10-05 14:09:58+00:00
doi = "00.0815/inv-00409"
endDate = 2012-08-06 01:10:08+00:00
name = "12100409-ST"
startDate = 2012-07-26 15:44:24+00:00
title = "NiO SC OF1 JUH HHL"
visitId = "1.1-P"

}]

The conditions in a query may also be put on the attributes of related objects. This allows rather complex queries.

20 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

Let us search for the datasets in this investigation that have been measured in a magnetic field larger then 5 Tesla
and include its parameters in the result:

>>> conditions = {
... "investigation.name": "= '10100601-ST'",
... "parameters.type.name": "= 'Magnetic field'",
... "parameters.type.units": "= 'T'",
... "parameters.numericValue": "> 5.0",
... }
>>> query = Query(client, "Dataset", conditions=conditions, includes=["parameters.
→˓type"])
>>> print(query)
SELECT o FROM Dataset o JOIN o.investigation AS i JOIN o.parameters AS p JOIN p.
→˓type AS pt WHERE i.name = '10100601-ST' AND p.numericValue > 5.0 AND pt.name =
→˓'Magnetic field' AND pt.units = 'T' INCLUDE o.parameters AS p, p.type
>>> client.search(query)
[(dataset){

createId = "simple/root"
createTime = 2020-02-05 16:49:29+01:00
id = 3
modId = "simple/root"
modTime = 2020-02-05 16:49:29+01:00
complete = False
endDate = 2010-10-01 08:17:48+02:00
name = "e208339"
parameters[] =

(datasetParameter){
createId = "simple/root"
createTime = 2020-02-05 16:49:29+01:00
id = 1
modId = "simple/root"
modTime = 2020-02-05 16:49:29+01:00
numericValue = 7.3
type =

(parameterType){
createId = "simple/root"
createTime = 2020-02-05 16:49:24+01:00
id = 5
modId = "simple/root"
modTime = 2020-02-05 16:49:24+01:00
applicableToDataCollection = False
applicableToDatafile = False
applicableToDataset = True
applicableToInvestigation = False
applicableToSample = False
enforced = False
name = "Magnetic field"
units = "T"
unitsFullName = "Tesla"
valueType = "NUMERIC"
verified = False

}
},
(datasetParameter){

createId = "simple/root"
createTime = 2020-02-05 16:49:29+01:00
id = 2
modId = "simple/root"
modTime = 2020-02-05 16:49:29+01:00
numericValue = 5.0
type =

(parameterType){

(continues on next page)

1.1. Tutorial 21



python-icat Documentation, Release 0.20.1

(continued from previous page)

createId = "simple/root"
createTime = 2020-02-05 16:49:24+01:00
id = 7
modId = "simple/root"
modTime = 2020-02-05 16:49:24+01:00
applicableToDataCollection = False
applicableToDatafile = False
applicableToDataset = True
applicableToInvestigation = False
applicableToSample = False
enforced = False
name = "Reactor power"
units = "MW"
unitsFullName = "Megawatt"
valueType = "NUMERIC"
verified = False

}
},

startDate = 2010-09-30 12:27:24+02:00
}]

We may incrementally add conditions to a query. This is particularly useful if the presence of some of the condi-
tions depend on the logic of your Python program. Consider:

>>> def get_investigation(client, name, visitId=None):
... query = Query(client, "Investigation")
... query.addConditions({"name": "= '%s'" % name})
... if visitId is not None:
... query.addConditions({"visitId": "= '%s'" % visitId})
... print(query)
... return client.assertedSearch(query)[0]
...
>>> get_investigation(client, "08100122-EF")
SELECT o FROM Investigation o WHERE o.name = '08100122-EF'
(investigation){

createId = "simple/root"
createTime = 2020-02-05 16:49:27+01:00
id = 1
modId = "simple/root"
modTime = 2020-02-05 16:49:27+01:00
name = "08100122-EF"
startDate = 2008-03-13 11:39:42+01:00
title = "Durol single crystal"
visitId = "1.1-P"

}
>>> get_investigation(client, "12100409-ST", "1.1-P")
SELECT o FROM Investigation o WHERE o.name = '12100409-ST' AND o.visitId = '1.1-P'
(investigation){

createId = "simple/root"
createTime = 2020-02-05 16:49:33+01:00
id = 3
modId = "simple/root"
modTime = 2020-02-05 16:49:33+01:00
endDate = 2012-08-06 03:10:08+02:00
name = "12100409-ST"
startDate = 2012-07-26 17:44:24+02:00
title = "NiO SC OF1 JUH HHL"
visitId = "1.1-P"

}

This get_investigation() function will search for investigations, either by name alone or by name and visitId,
depending on the arguments.

22 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

It is also possible to put more then one conditions on a single attribute: setting the corresponding value in the
conditions argument to a list of strings will result in combining the conditions on that attribute. Search for all
datafiles created in 2012:

>>> conditions = {
... "datafileCreateTime": [">= '2012-01-01'", "< '2013-01-01'"]
... }
>>> query = Query(client, "Datafile", conditions=conditions)
>>> print(query)
SELECT o FROM Datafile o WHERE o.datafileCreateTime >= '2012-01-01' AND o.
→˓datafileCreateTime < '2013-01-01'
>>> client.search(query)
[(datafile){

createId = "simple/root"
createTime = 2020-02-05 16:49:34+01:00
id = 7
modId = "simple/root"
modTime = 2020-02-05 16:49:34+01:00
datafileCreateTime = 2012-07-16 16:30:17+02:00
datafileModTime = 2012-07-16 16:30:17+02:00
fileSize = 28937
name = "e208945-2.nxs"

}, (datafile){
createId = "simple/root"
createTime = 2020-02-05 16:49:34+01:00
id = 8
modId = "simple/root"
modTime = 2020-02-05 16:49:34+01:00
checksum = "bd55affa"
datafileCreateTime = 2012-07-30 03:10:08+02:00
datafileModTime = 2012-07-30 03:10:08+02:00
fileSize = 459
name = "e208945.dat"

}, (datafile){
createId = "simple/root"
createTime = 2020-02-05 16:49:34+01:00
id = 10
modId = "simple/root"
modTime = 2020-02-05 16:49:34+01:00
datafileCreateTime = 2012-07-16 16:30:17+02:00
datafileModTime = 2012-07-16 16:30:17+02:00
fileSize = 14965
name = "e208947.nxs"

}]

Of course, that last example also works when adding the conditions incrementally:

>>> query = Query(client, "Datafile")
>>> query.addConditions({"datafileCreateTime": ">= '2012-01-01'"})
>>> query.addConditions({"datafileCreateTime": "< '2013-01-01'"})
>>> print(query)
SELECT o FROM Datafile o WHERE o.datafileCreateTime >= '2012-01-01' AND o.
→˓datafileCreateTime < '2013-01-01'

Instead of returning a list of the matching objects, we may also request single attributes. The result will be a list
of the attribute values of the matching objects. Listing the names of all datasets:

>>> query = Query(client, "Dataset", attributes="name")
>>> print(query)
SELECT o.name FROM Dataset o
>>> client.search(query)
[e201215, e201216, e208339, e208341, e208342, e208945, e208946, e208947]

1.1. Tutorial 23



python-icat Documentation, Release 0.20.1

As the name of that keyword argument suggests, we may also search for multiple attributes at once. The result
will be a tuple of attribute values rather then a single value for each object found in the query. This requires an
ICAT server version 4.11 or newer though:

>>> query = Query(client, "Dataset", attributes=["investigation.name", "name",
→˓"complete", "type.name"])
>>> print(query)
SELECT i.name, o.name, o.complete, t.name FROM Dataset o JOIN o.investigation AS i
→˓JOIN o.type AS t
>>> client.search(query)
[(08100122-EF, e201215, False, raw), (08100122-EF, e201216, False, raw), (10100601-
→˓ST, e208339, False, raw), (10100601-ST, e208341, False, raw), (10100601-ST,
→˓e208342, False, raw), (12100409-ST, e208945, False, raw), (12100409-ST, e208946,
→˓False, raw), (12100409-ST, e208947, True, analyzed)]

There are also some aggregate functions that may be applied to search results. Let’s count all datasets:

>>> query = Query(client, "Dataset", aggregate="COUNT")
>>> print(query)
SELECT COUNT(o) FROM Dataset o
>>> client.search(query)
[8]

Using such aggregate functions in a query may result in a huge performance gain, because the counting is done
directly in the database backend of ICAT, instead of compiling a list of all datasets, transferring them to the client,
and counting them at client side.

Let’s check for a given investigation, the minimum, maximum, and average magnetic field applied in the measure-
ments:

>>> conditions = {
... "dataset.investigation.name": "= '10100601-ST'",
... "type.name": "= 'Magnetic field'",
... "type.units": "= 'T'",
... }
>>> query = Query(client, "DatasetParameter", conditions=conditions, attributes=
→˓"numericValue")
>>> print(query)
SELECT o.numericValue FROM DatasetParameter o JOIN o.dataset AS ds JOIN ds.
→˓investigation AS i JOIN o.type AS t WHERE i.name = '10100601-ST' AND t.name =
→˓'Magnetic field' AND t.units = 'T'
>>> client.search(query)
[7.3, 2.7]
>>> query.setAggregate("MIN")
>>> print(query)
SELECT MIN(o.numericValue) FROM DatasetParameter o JOIN o.dataset AS ds JOIN ds.
→˓investigation AS i JOIN o.type AS t WHERE i.name = '10100601-ST' AND t.name =
→˓'Magnetic field' AND t.units = 'T'
>>> client.search(query)
[2.7]
>>> query.setAggregate("MAX")
>>> print(query)
SELECT MAX(o.numericValue) FROM DatasetParameter o JOIN o.dataset AS ds JOIN ds.
→˓investigation AS i JOIN o.type AS t WHERE i.name = '10100601-ST' AND t.name =
→˓'Magnetic field' AND t.units = 'T'
>>> client.search(query)
[7.3]
>>> query.setAggregate("AVG")
>>> print(query)
SELECT AVG(o.numericValue) FROM DatasetParameter o JOIN o.dataset AS ds JOIN ds.
→˓investigation AS i JOIN o.type AS t WHERE i.name = '10100601-ST' AND t.name =
→˓'Magnetic field' AND t.units = 'T'

(continues on next page)

24 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

(continued from previous page)

>>> client.search(query)
[5.0]

For another example, let’s search for all investigations, having any dataset with a magnetic field parameter set:

>>> conditions = {
... "datasets.parameters.type.name": "= 'Magnetic field'",
... "datasets.parameters.type.units": "= 'T'",
... }
>>> query = Query(client, "Investigation", conditions=conditions)
>>> print(query)
SELECT o FROM Investigation o JOIN o.datasets AS s1 JOIN s1.parameters AS s2 JOIN
→˓s2.type AS s3 WHERE s3.name = 'Magnetic field' AND s3.units = 'T'
>>> client.search(query)
[(investigation){

createId = "simple/root"
createTime = 2020-02-05 16:49:28+01:00
id = 2
modId = "simple/root"
modTime = 2020-02-05 16:49:28+01:00
endDate = 2010-10-12 17:00:00+02:00
name = "10100601-ST"
startDate = 2010-09-30 12:27:24+02:00
title = "Ni-Mn-Ga flat cone"
visitId = "1.1-N"

}, (investigation){
createId = "simple/root"
createTime = 2020-02-05 16:49:28+01:00
id = 2
modId = "simple/root"
modTime = 2020-02-05 16:49:28+01:00
endDate = 2010-10-12 17:00:00+02:00
name = "10100601-ST"
startDate = 2010-09-30 12:27:24+02:00
title = "Ni-Mn-Ga flat cone"
visitId = "1.1-N"

}]

We get the same investigation twice! The reason is that this investigation has two datasets, both having a magnetic
field parameter respectively. We may fix that by applying DISTINCT:

>>> query.setAggregate("DISTINCT")
>>> print(query)
SELECT DISTINCT(o) FROM Investigation o JOIN o.datasets AS s1 JOIN s1.parameters
→˓AS s2 JOIN s2.type AS s3 WHERE s3.name = 'Magnetic field' AND s3.units = 'T'
>>> client.search(query)
[(investigation){

createId = "simple/root"
createTime = 2020-02-05 16:49:28+01:00
id = 2
modId = "simple/root"
modTime = 2020-02-05 16:49:28+01:00
endDate = 2010-10-12 17:00:00+02:00
name = "10100601-ST"
startDate = 2010-09-30 12:27:24+02:00
title = "Ni-Mn-Ga flat cone"
visitId = "1.1-N"

}]

DISTINCT may be combined with COUNT, AVG, and SUM in order to make sure not to count the same object
more then once:

1.1. Tutorial 25



python-icat Documentation, Release 0.20.1

>>> conditions = {
... "datasets.parameters.type.name": "= 'Magnetic field'",
... "datasets.parameters.type.units": "= 'T'",
... }
>>> query = Query(client, "Investigation", conditions=conditions, aggregate="COUNT
→˓")
>>> print(query)
SELECT COUNT(o) FROM Investigation o JOIN o.datasets AS s1 JOIN s1.parameters AS
→˓s2 JOIN s2.type AS s3 WHERE s3.name = 'Magnetic field' AND s3.units = 'T'
>>> client.search(query)
[2]
>>> query.setAggregate("COUNT:DISTINCT")
>>> print(query)
SELECT COUNT(DISTINCT(o)) FROM Investigation o JOIN o.datasets AS s1 JOIN s1.
→˓parameters AS s2 JOIN s2.type AS s3 WHERE s3.name = 'Magnetic field' AND s3.
→˓units = 'T'
>>> client.search(query)
[1]

The JPQL queries support sorting of the results. Search for all dataset parameter, ordered by parameter type name
(ascending), units (ascending), and value (descending):

>>> order = ["type.name", "type.units", ("numericValue", "DESC")]
>>> query = Query(client, "DatasetParameter", includes=["type"], order=order)
>>> print(query)
SELECT o FROM DatasetParameter o JOIN o.type AS t ORDER BY t.name, t.units, o.
→˓numericValue DESC INCLUDE o.type
>>> client.search(query)
[(datasetParameter){

createId = "simple/root"
createTime = 2020-02-05 16:49:29+01:00
id = 1
modId = "simple/root"
modTime = 2020-02-05 16:49:29+01:00
numericValue = 7.3
type =

(parameterType){
createId = "simple/root"
createTime = 2020-02-05 16:49:24+01:00
id = 5
modId = "simple/root"
modTime = 2020-02-05 16:49:24+01:00
applicableToDataCollection = False
applicableToDatafile = False
applicableToDataset = True
applicableToInvestigation = False
applicableToSample = False
enforced = False
name = "Magnetic field"
units = "T"
unitsFullName = "Tesla"
valueType = "NUMERIC"
verified = False

}
}, (datasetParameter){
createId = "simple/root"
createTime = 2020-02-05 16:49:32+01:00
id = 4
modId = "simple/root"
modTime = 2020-02-05 16:49:32+01:00
numericValue = 2.7
type =

(continues on next page)

26 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

(continued from previous page)

(parameterType){
createId = "simple/root"
createTime = 2020-02-05 16:49:24+01:00
id = 5
modId = "simple/root"
modTime = 2020-02-05 16:49:24+01:00
applicableToDataCollection = False
applicableToDatafile = False
applicableToDataset = True
applicableToInvestigation = False
applicableToSample = False
enforced = False
name = "Magnetic field"
units = "T"
unitsFullName = "Tesla"
valueType = "NUMERIC"
verified = False

}
}, (datasetParameter){
createId = "simple/root"
createTime = 2020-02-05 16:49:32+01:00
id = 3
modId = "simple/root"
modTime = 2020-02-05 16:49:32+01:00
numericValue = 5.0
type =

(parameterType){
createId = "simple/root"
createTime = 2020-02-05 16:49:24+01:00
id = 7
modId = "simple/root"
modTime = 2020-02-05 16:49:24+01:00
applicableToDataCollection = False
applicableToDatafile = False
applicableToDataset = True
applicableToInvestigation = False
applicableToSample = False
enforced = False
name = "Reactor power"
units = "MW"
unitsFullName = "Megawatt"
valueType = "NUMERIC"
verified = False

}
}, (datasetParameter){
createId = "simple/root"
createTime = 2020-02-05 16:49:29+01:00
id = 2
modId = "simple/root"
modTime = 2020-02-05 16:49:29+01:00
numericValue = 5.0
type =

(parameterType){
createId = "simple/root"
createTime = 2020-02-05 16:49:24+01:00
id = 7
modId = "simple/root"
modTime = 2020-02-05 16:49:24+01:00
applicableToDataCollection = False
applicableToDatafile = False
applicableToDataset = True

(continues on next page)

1.1. Tutorial 27



python-icat Documentation, Release 0.20.1

(continued from previous page)

applicableToInvestigation = False
applicableToSample = False
enforced = False
name = "Reactor power"
units = "MW"
unitsFullName = "Megawatt"
valueType = "NUMERIC"
verified = False

}
}, (datasetParameter){
createId = "simple/root"
createTime = 2020-02-05 16:49:34+01:00
id = 5
modId = "simple/root"
modTime = 2020-02-05 16:49:34+01:00
numericValue = 3.92
type =

(parameterType){
createId = "simple/root"
createTime = 2020-02-05 16:49:25+01:00
id = 9
modId = "simple/root"
modTime = 2020-02-05 16:49:25+01:00
applicableToDataCollection = False
applicableToDatafile = False
applicableToDataset = True
applicableToInvestigation = False
applicableToSample = False
enforced = False
name = "Sample temperature"
units = "C"
unitsFullName = "Celsius"
valueType = "NUMERIC"
verified = False

}
}, (datasetParameter){
createId = "simple/root"
createTime = 2020-02-05 16:49:34+01:00
id = 6
modId = "simple/root"
modTime = 2020-02-05 16:49:34+01:00
numericValue = 277.07
type =

(parameterType){
createId = "simple/root"
createTime = 2020-02-05 16:49:25+01:00
id = 10
modId = "simple/root"
modTime = 2020-02-05 16:49:25+01:00
applicableToDataCollection = False
applicableToDatafile = False
applicableToDataset = True
applicableToInvestigation = False
applicableToSample = False
enforced = False
name = "Sample temperature"
units = "K"
unitsFullName = "Kelvin"
valueType = "NUMERIC"
verified = False

}

(continues on next page)

28 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

(continued from previous page)

}]

In a similar way as for conditions, we may use JPQL functions also in the order argument to Query . Let’s search
for user sorted by the length of their name, from longest to shortest:

>>> query = Query(client, "User", conditions={"fullName": "IS NOT NULL"}, order=[(
→˓"LENGTH(fullName)", "DESC")])
>>> print(query)
SELECT o FROM User o WHERE o.fullName IS NOT NULL ORDER BY LENGTH(o.fullName) DESC
>>> for user in client.search(query):
... print("%d: %s" % (len(user.fullName), user.fullName))
...
19: Rudolph Beck-Dülmen
19: Jean-Baptiste Botul
16: Nicolas Bourbaki
13: Aelius Cordus
11: User Office
10: Arnold Hau
10: IDS reader
8: John Doe
4: Root

We may limit the number of returned items. Search for the second to last dataset to have been finished:

>>> query = Query(client, "Dataset", order=[("endDate", "DESC")], limit=(1, 1))
>>> print(query)
SELECT o FROM Dataset o ORDER BY o.endDate DESC LIMIT 1, 1
>>> client.search(query)
[(dataset){

createId = "simple/root"
createTime = 2020-02-05 16:49:34+01:00
id = 6
modId = "simple/root"
modTime = 2020-02-05 16:49:34+01:00
complete = False
endDate = 2012-07-30 03:10:08+02:00
name = "e208945"
startDate = 2012-07-26 17:44:24+02:00

}]

Useful search methods

Additionally to the generic search() method defined in the ICAT API, python-icat provides a few custom
search methods that are useful in particular situations.

assertedSearch

The generic search returns a list of matching objects. Often, the number of objects to expect in the result is known
from the context. In the most common case, you would expect exactly one object in the result and would raise
an error if this is not the case. This is what assertedSearch() does. Example: in many production ICAT
installations there is one and only one facility object and you often need to fetch that in your scripts in order
to create a new investigation or a new parameter type. Using the generic search method you would write the
following boiler plate code over and over:

res = client.search(Query(client, "Facility"))
if not res:

raise RuntimeError("Facility not found")

(continues on next page)

1.1. Tutorial 29



python-icat Documentation, Release 0.20.1

(continued from previous page)

elif len(res) > 1:
raise RuntimeError("Facility not unique")

facility = res[0]

(Note that you cannot safely subscript the result unless you know it’s not empty.) Using assertedSearch(),
you can write the same as:

facility = client.assertedSearch(Query(client, "Facility"))[0]

searchChunked

A production ICAT has many datasets and datafiles. You cannot search for all of them at once, because the result
might not fit in your client’s memory. Furthermore, ICAT has a configured limit for the maximum of objects to
return in one search call, so you might hit that wall if you are not careful. The searchChunked() method
comes handy if you need to iterate over a potentially large set of results. It can be used as a drop in replacement
for the generic search method most of the times, see the reference documentation for some subtle differences. You
can safely do things like:

for ds in client.searchChunked(Query(client, "Dataset")):
# do something useful with the dataset ds ...
print(ds.name)

searchMatching

Given an object having all the attributes and related objects set that form the uniqueness constraint for the object
type, the searchMatching() method searches this very object from the ICAT server. While this may not
sound very useful at first glance, it has a particular use case:

def get_dataset(client, inv_name, ds_name, ds_type="raw"):
"""Get a dataset in an investigation.
If it already exists, search and return it, create it, if not.
"""
try:

dataset = client.new("dataset")
query = Query(client, "Investigation", conditions={

"name": "= '%s'" % inv_name
})
dataset.investigation = client.assertedSearch(query)[0]
query = Query(client, "DatasetType", conditions={

"name": "= '%s'" % ds_type
})
dataset.type = client.assertedSearch(query)[0]
dataset.complete = False
dataset.name = ds_name
dataset.create()

except icat.ICATObjectExistsError:
dataset = client.searchMatching(dataset)

return dataset

1.1.7 Upload and download files to and from IDS

The ICAT Data Service (IDS) is the component that manages the storage in ICAT. It implements file upload and
download. You can use python-icat not only as a client for ICAT, but also for IDS. In this tutorial section, we look
at some basic examples of this. The examples below assume to have a running IDS that is ready to accept our
requests.

30 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

If the idsurl configuration variable is set (see Configuration for details), python-icat will provide an IDS client in
the ids attribute of the Client class. This IDSClient provides methods for the IDS API calls:

$ python -i login.py -s myicat_nbour
Login to https://icat.example.com:8181 was successful.
User: db/nbour
>>> client.ids.isReadOnly()
False

Additionally, the Client class directly provides methods for some of the mosten often needed IDS calls. These
custom IDS methods are based on the low level IDS client methods but are somewhat more convenient to use and
integrate better in the python-icat data structures.

This tutorial section uses the same example content in ICAT as the previous section. This content can be set up
with the following commands at the command line:

$ wipeicat -s myicat_root
$ icatingest -s myicat_root -i icatdump-4.10.yaml

If you already did that for the previous section, you don’t need to repeat it. Take notice of the hint on the content
of the icatdump-4.10.yaml file and ICAT server versions from the previous section.

Upload files

Obviously, we would need some local files first, if we want to upload them. Let’s create a few:

>>> users = [("jdoe", "John"), ("nbour", "Nicolas"), ("rbeck", "Rudolph")]
>>> for user, name in users:
... with open("greet-%s.txt" % user, "wt") as f:
... print("Hello %s!" % name, file=f)
...

We need a dataset in ICAT that the uploaded files should be put into, so let’s create one:

>>> from icat.query import Query
>>> investigation = client.assertedSearch(Query(client, "Investigation",
→˓conditions={"name": "= '12100409-ST'"}))[0]
>>> dataset = client.new("dataset")
>>> dataset.investigation = investigation
>>> dataset.type = client.assertedSearch(Query(client, "DatasetType", conditions={
→˓"name": "= 'other'"}))[0]
>>> dataset.name = "greetings"
>>> dataset.complete = False
>>> dataset.create()

For each of the files, we create a new datafile object and call the putData() method to upload it:

>>> df_format = client.assertedSearch(Query(client, "DatafileFormat", conditions={
→˓"name": "= 'Text'"}))[0]
>>> for fname in ("greet-jdoe.txt", "greet-nbour.txt", "greet-rbeck.txt"):
... datafile = client.new("datafile", name=fname, dataset=dataset,
→˓datafileFormat=df_format)
... client.putData(fname, datafile)
...
(datafile){

createId = "db/nbour"
createTime = 2020-02-21 14:57:16+01:00
id = 11
modId = "db/nbour"
modTime = 2020-02-21 14:57:16+01:00
checksum = "bef32c73"

(continues on next page)

1.1. Tutorial 31



python-icat Documentation, Release 0.20.1

(continued from previous page)

datafileCreateTime = 2020-02-21 13:45:16+01:00
datafileModTime = 2020-02-21 13:45:16+01:00
fileSize = 12
location = "3/9/f3b5c400-0a24-4915-b7a7-d4f976ec3e73"
name = "greet-jdoe.txt"

}
(datafile){

createId = "db/nbour"
createTime = 2020-02-21 14:57:16+01:00
id = 12
modId = "db/nbour"
modTime = 2020-02-21 14:57:16+01:00
checksum = "9012de77"
datafileCreateTime = 2020-02-21 13:45:16+01:00
datafileModTime = 2020-02-21 13:45:16+01:00
fileSize = 15
location = "3/9/392d4c49-d9c4-40fa-b4cb-5bdcbb4414e6"
name = "greet-nbour.txt"

}
(datafile){

createId = "db/nbour"
createTime = 2020-02-21 14:57:16+01:00
id = 13
modId = "db/nbour"
modTime = 2020-02-21 14:57:16+01:00
checksum = "cc830993"
datafileCreateTime = 2020-02-21 13:45:16+01:00
datafileModTime = 2020-02-21 13:45:16+01:00
fileSize = 15
location = "3/9/dd4c6f7f-05f6-418d-8c1f-8a87ca727e5a"
name = "greet-rbeck.txt"

}

Note that we did not create these datafiles in ICAT. IDS did this for us in response to the putData() call. IDS
also calculated the checksum and set the file size. The location attribute is also set by IDS and is mostly only rele-
vant internally in IDS. The value depends on the IDS storage plugin and may be different. The datafileCreateTime
and the datafileModTime has been determined by fstat’ing the local files in putData().

Download files

We can request a download of a set of data using the getData() method:

>>> query = Query(client, "Datafile", conditions={"name": "= 'greet-jdoe.txt'",
→˓"dataset.name": "= 'greetings'"})
>>> df = client.assertedSearch(query)[0]
>>> data = client.getData([df])
>>> type(data)
<class 'http.client.HTTPResponse'>
>>> data.read().decode('utf8')
'Hello John!\n'

This method takes a list of investigation, dataset, or datafile objects as argument. It returns a HTTPResponse
object, which is a file like object that we can read the body of the HTTP response from. If we requested only
one single file, this response will contain the file content. If more then a single file is requested, either by passing
multiple files in the argument or by requesting a dataset having multiple files, IDS will send a zip file with the
requested files:

>>> from io import BytesIO
>>> from zipfile import ZipFile

(continues on next page)

32 Chapter 1. Parts of the documentation

https://docs.python.org/3/library/http.client.html#http.client.HTTPResponse


python-icat Documentation, Release 0.20.1

(continued from previous page)

>>> query = Query(client, "Dataset", conditions={"name": "= 'greetings'"})
>>> ds = client.assertedSearch(query)[0]
>>> data = client.getData([ds])
>>> buffer = BytesIO(data.read())
>>> with ZipFile(buffer) as zipfile:
... for f in zipfile.namelist():
... print("file name: %s" % f)
... print("content: %r" % zipfile.open(f).read().decode('utf8'))
...
file name: ids/ESNF/12100409-ST/1.1-P/greetings/greet-jdoe.txt
content: 'Hello John!\n'
file name: ids/ESNF/12100409-ST/1.1-P/greetings/greet-nbour.txt
content: 'Hello Nicolas!\n'
file name: ids/ESNF/12100409-ST/1.1-P/greetings/greet-rbeck.txt
content: 'Hello Rudolph!\n'

The internal file names in the zip file depend on the IDS storage plugin and may be different.

Note that it may happen that the files we request are not readily available because they are archived to tape. We
create this condition by explicitely requesting IDS to archive our dataset:

>>> from icat.ids import DataSelection
>>> selection = DataSelection([ds])
>>> client.ids.archive(selection)

Note that we needed to resort to a low level call from the IDS client for that. This method requires the selected
data to be wrapped in a DataSelection object. We may also check that status:

>>> client.ids.getStatus(selection)
'ARCHIVED'

If we request the data now, we will get an error from IDS:

>>> data = client.getData([ds])
Traceback (most recent call last):

...
icat.exception.IDSDataNotOnlineError: Before putting, getting or deleting a
→˓datafile, its dataset has to be restored, restoration requested automatically

As the error message hints, a restoration of the data has been requested automatically. So we can just repeat the
request again after a short while:

>>> client.ids.getStatus(selection)
'ONLINE'
>>> data = client.getData([ds])
>>> len(data.read())
665

We can ask IDS with the prepareData() call to store a selection of data objects internally for later referral:

>>> preparedId = client.prepareData(selection)
>>> preparedId
'eb0dd942-7ce9-4ea9-b342-ea326edd4dfe'

The return value is a random id. We can use that preparedId to query the status or to download the data:

>>> client.isDataPrepared(preparedId)
True
>>> data = client.getData(preparedId)
>>> buffer = BytesIO(data.read())
>>> with ZipFile(buffer) as zipfile:

(continues on next page)

1.1. Tutorial 33



python-icat Documentation, Release 0.20.1

(continued from previous page)

... zipfile.namelist()

...
['ids/ESNF/12100409-ST/1.1-P/greetings/greet-jdoe.txt', 'ids/ESNF/12100409-ST/1.1-
→˓P/greetings/greet-nbour.txt', 'ids/ESNF/12100409-ST/1.1-P/greetings/greet-rbeck.
→˓txt']

1.1.8 Advanced configuration

So far, we have relied on the icat.config module to provide configuration variables for us (such as url or
idsurl). However, programs may also define their own custom configuration variables.

Custom configuration variables

Let’s add the option to redirect the output of our example program to a file. The output file path shall be passed
via the command line as a configuration variable. To set this up, we can use the add_variable() method:

#! /usr/bin/python

from __future__ import print_function
import sys
import icat
import icat.config

config = icat.config.Config(ids="optional")
config.add_variable("outfile", ("-o", "--outputfile"),

dict(help="output file name or '-' for stdout"),
default="-")

client, conf = config.getconfig()
client.login(conf.auth, conf.credentials)

if conf.outfile == "-":
out = sys.stdout

else:
out = open(conf.outfile, "wt")

print("Login to %s was successful." % (conf.url), file=out)
print("User: %s" % (client.getUserName()), file=out)

out.close()

This adds a new configuration variable outfile. It can be specified on the command line as -o OUTFILE or
--outputfile OUTFILE and it defaults to the string - if not specified. We can check this on the list of
available command line options:

$ python config-custom.py -h
usage: config-custom.py [-h] [-c CONFIGFILE] [-s SECTION] [-w URL]

[--idsurl IDSURL] [--no-check-certificate]
[--http-proxy HTTP_PROXY] [--https-proxy HTTPS_PROXY]
[--no-proxy NO_PROXY] [-a AUTH] [-u USERNAME] [-P]
[-p PASSWORD] [-o OUTFILE]

optional arguments:
-h, --help show this help message and exit
-c CONFIGFILE, --configfile CONFIGFILE

config file
-s SECTION, --configsection SECTION

section in the config file
-w URL, --url URL URL to the web service description

(continues on next page)

34 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

(continued from previous page)

--idsurl IDSURL URL to the ICAT Data Service
--no-check-certificate

don't verify the server certificate
--http-proxy HTTP_PROXY

proxy to use for http requests
--https-proxy HTTPS_PROXY

proxy to use for https requests
--no-proxy NO_PROXY list of exclusions for proxy use
-a AUTH, --auth AUTH authentication plugin
-u USERNAME, --user USERNAME

username
-P, --prompt-pass prompt for the password
-p PASSWORD, --pass PASSWORD

password
-o OUTFILE, --outputfile OUTFILE

output file name or '-' for stdout

This new option is optional, so the program can be used as before:

$ python config-custom.py -s myicat_jdoe
Login to https://icat.example.com:8181 was successful.
User: db/jdoe

If we add the option on the command line, it has the expected effect:

$ python config-custom.py -s myicat_jdoe -o out.txt
$ cat out.txt
Login to https://icat.example.com:8181 was successful.
User: db/jdoe

Alternatively, we may also specify the option in the configuration file as follows:

[myicat_jdoe]
url = https://icat.example.com:8181
auth = db
username = jdoe
password = secret
idsurl = https://icat.example.com:8181
#checkCert = No
outfile = out.txt

Flag configuration variables

Instead of passing a string value to our program, we can also define different variable types using the type param-
eter. Among other things, this allows us to pass boolean/flag parameters. Let’s add another configuration variable
to our example program that lets us control the output via a flag:

#! /usr/bin/python

from __future__ import print_function
import sys
import icat
import icat.config

config = icat.config.Config(ids="optional")
config.add_variable("outfile", ("-o", "--outputfile"),

dict(help="output file name or '-' for stdout"),
default="-")

config.add_variable("hide", ["--hide-user-name"],

(continues on next page)

1.1. Tutorial 35



python-icat Documentation, Release 0.20.1

(continued from previous page)

dict(help="do not display the user after login"),
default=False, type=icat.config.flag)

client, conf = config.getconfig()
client.login(conf.auth, conf.credentials)

if conf.outfile == "-":
out = sys.stdout

else:
out = open(conf.outfile, "wt")

print("Login to %s was successful." % (conf.url), file=out)
if not conf.hide:

print("User: %s" % (client.getUserName()), file=out)

out.close()

If we call our program normally, we get the same output as before:

$ python config-flag.py -s myicat_jdoe
Login to https://icat.example.com:8181 was successful.
User: db/jdoe

But if we pass the flag parameter, it produces a different output:

$ python config-flag.py -s myicat_jdoe --hide-user-name
Login to https://icat.example.com:8181 was successful.

A flag type configuration variable also adds a negated form of the command line flag:

$ python config-flag.py -s myicat_jdoe --no-hide-user-name
Login to https://icat.example.com:8181 was successful.
User: db/jdoe

This may look somewhat pointless at first glance as it only affirms the default. It becomes useful if we set this flag
in the configuration file as in:

[myicat_jdoe]
url = https://icat.example.com:8181
auth = db
username = jdoe
password = secret
idsurl = https://icat.example.com:8181
#checkCert = No
hide = true

In that case we can override this setting on the command line with --no-hide-user-name.

Defining sub-commands

Many programs split up their functionality into sub-commands. For instance, the git program can be called as
git clone, git checkout, git commit, and so on. In general, each sub-command will take their own
set of configuration variables.

You can create programs like this and manage the configuration of each sub-command with icat.config us-
ing the add_subcommands() method. It adds a special ConfigSubCmds configuration variable represent-
ing the sub-command. This object provides the add_subconfig() method to register a new sub-command
value. On the sub-config object in turn you can then define specific configuration variables using the familiar
add_variable() method.

To put it all together, consider the following example program:

36 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

#! /usr/bin/python

from __future__ import print_function
import icat
import icat.config

config = icat.config.Config(ids="optional")

# add a global configuration variable 'entity' common for all sub-commands
config.add_variable("entity", ("-e", "--entity"),

dict(help="an entity from the ICAT schema",
choices=["User", "Study"]))

# add the configuration variable representing the sub-commands
subcmds = config.add_subcommands("mode")

# register three possible values for the sub-commands {list,create,delete}
subconfig_list = subcmds.add_subconfig("list",

dict(help="list existing ICAT objects"))
subconfig_create = subcmds.add_subconfig("create",

dict(help="create a new ICAT object"))
subconfig_delete = subcmds.add_subconfig("delete",

dict(help="delete an ICAT object"))

# add two additional configuration variables 'name' and 'id' that are
# specific to the 'create' and 'delete' sub-commands respectively.
subconfig_create.add_variable("name", ("-n", "--name"),

dict(help="name for the new ICAT object"))
subconfig_delete.add_variable("id", ("-i", "--id"),

dict(help="ID of the ICAT object"))

client, conf = config.getconfig()
client.login(conf.auth, conf.credentials)

# check which sub-command (mode) was called
if conf.mode.name == "list":

print("listing existing %s objects..." % conf.entity)
print(client.search(conf.entity))

elif conf.mode.name == "create":
print("creating a new %s object named %s..." % (conf.entity, conf.name))
obj = client.new(conf.entity.lower(), name=conf.name)
obj.create()

elif conf.mode.name == "delete":
print("deleting the %s object with ID %s..." % (conf.entity, conf.id))
obj = client.get(conf.entity, conf.id)
client.delete(obj)

print("done")

If we check the available commands for the above program, our three sub-commands should be listed:

$ python config-sub-commands.py -h
usage: config-sub-commands.py [-h] [-c CONFIGFILE] [-s SECTION] [-w URL]

[--idsurl IDSURL] [--no-check-certificate]
[--http-proxy HTTP_PROXY]
[--https-proxy HTTPS_PROXY]
[--no-proxy NO_PROXY] [-a AUTH] [-u USERNAME]
[-P] [-p PASSWORD] [-e {User,Study}]
{list,create,delete} ...

optional arguments:
-h, --help show this help message and exit

(continues on next page)

1.1. Tutorial 37



python-icat Documentation, Release 0.20.1

(continued from previous page)

-c CONFIGFILE, --configfile CONFIGFILE
config file

-s SECTION, --configsection SECTION
section in the config file

-w URL, --url URL URL to the web service description
--idsurl IDSURL URL to the ICAT Data Service
--no-check-certificate

don't verify the server certificate
--http-proxy HTTP_PROXY

proxy to use for http requests
--https-proxy HTTPS_PROXY

proxy to use for https requests
--no-proxy NO_PROXY list of exclusions for proxy use
-a AUTH, --auth AUTH authentication plugin
-u USERNAME, --user USERNAME

username
-P, --prompt-pass prompt for the password
-p PASSWORD, --pass PASSWORD

password
-e {User,Study}, --entity {User,Study}

an entity from the ICAT schema

subcommands:
{list,create,delete}
list list existing ICAT objects
create create a new ICAT object
delete delete an ICAT object

This looks good. Let’s try calling our program with the list sub-command. Of course we must also provide a
section from our config file (-s SECTION) as well as the entity variable (-e {User,Study}) we defined
earlier:

$ python config-sub-commands.py -s myicat_root -e User list
listing existing User objects...
[(user){

createId = "simple/root"
createTime = 2020-02-20 15:55:39+01:00
id = 1
modId = "simple/root"
modTime = 2020-02-20 15:55:39+01:00
fullName = "Aelius Cordus"
name = "db/acord"

}, (user){
createId = "simple/root"
createTime = 2020-02-20 15:55:39+01:00
id = 2
modId = "simple/root"
modTime = 2020-02-20 15:55:39+01:00
fullName = "Arnold Hau"
name = "db/ahau"

}, (user){
createId = "simple/root"
createTime = 2020-02-20 15:55:39+01:00
id = 3
modId = "simple/root"
modTime = 2020-02-20 15:55:39+01:00
fullName = "Jean-Baptiste Botul"
name = "db/jbotu"

}, (user){
createId = "simple/root"
createTime = 2020-02-20 15:55:39+01:00

(continues on next page)

38 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

(continued from previous page)

id = 4
modId = "simple/root"
modTime = 2020-02-20 15:55:39+01:00
fullName = "John Doe"
name = "db/jdoe"

}, (user){
createId = "simple/root"
createTime = 2020-02-20 15:55:39+01:00
id = 5
modId = "simple/root"
modTime = 2020-02-20 15:55:39+01:00
fullName = "Nicolas Bourbaki"
name = "db/nbour"

}, (user){
createId = "simple/root"
createTime = 2020-02-20 15:55:39+01:00
id = 6
modId = "simple/root"
modTime = 2020-02-20 15:55:39+01:00
fullName = "Rudolph Beck-Dülmen"
name = "db/rbeck"

}, (user){
createId = "simple/root"
createTime = 2020-02-20 15:55:39+01:00
id = 7
modId = "simple/root"
modTime = 2020-02-20 15:55:39+01:00
fullName = "IDS reader"
name = "simple/idsreader"

}, (user){
createId = "simple/root"
createTime = 2020-02-20 15:55:39+01:00
id = 8
modId = "simple/root"
modTime = 2020-02-20 15:55:39+01:00
fullName = "Root"
name = "simple/root"

}, (user){
createId = "simple/root"
createTime = 2020-02-20 15:55:39+01:00
id = 9
modId = "simple/root"
modTime = 2020-02-20 15:55:39+01:00
fullName = "User Office"
name = "simple/useroffice"

}]
done

We see the users defined in the example content created in the previous tutorial sections. Let’s add a new user. We
will use the create sub-command to do this. Earlier, we defined a configuration variable name (-n NAME) that is
specific to the create sub-command. We can check this by calling:

$ python config-sub-commands.py create -h
usage: config-sub-commands.py create [-h] [-n NAME]

optional arguments:
-h, --help show this help message and exit
-n NAME, --name NAME name for the new ICAT object

Let’s create a new User object named “db/alice”. Note that we must provide the ‘global’ configuration variables
(section and entity) before the sub-command, and the sub-command-specific option (name) after it:

1.1. Tutorial 39



python-icat Documentation, Release 0.20.1

$ python config-sub-commands.py -s myicat_root -e User create -n db/alice
creating a new User object named db/alice...
done

If we now list the User objects again, we can see a new object with name “db/alice”:

$ python config-sub-commands.py -s myicat_root -e User list
listing existing User objects...
[(user){

createId = "simple/root"
createTime = 2020-02-20 15:55:39+01:00
id = 1
modId = "simple/root"
modTime = 2020-02-20 15:55:39+01:00
fullName = "Aelius Cordus"
name = "db/acord"

}, (user){
createId = "simple/root"
createTime = 2020-02-20 15:55:39+01:00
id = 2
modId = "simple/root"
modTime = 2020-02-20 15:55:39+01:00
fullName = "Arnold Hau"
name = "db/ahau"

}, (user){
createId = "simple/root"
createTime = 2020-02-20 15:55:39+01:00
id = 3
modId = "simple/root"
modTime = 2020-02-20 15:55:39+01:00
fullName = "Jean-Baptiste Botul"
name = "db/jbotu"

}, (user){
createId = "simple/root"
createTime = 2020-02-20 15:55:39+01:00
id = 4
modId = "simple/root"
modTime = 2020-02-20 15:55:39+01:00
fullName = "John Doe"
name = "db/jdoe"

}, (user){
createId = "simple/root"
createTime = 2020-02-20 15:55:39+01:00
id = 5
modId = "simple/root"
modTime = 2020-02-20 15:55:39+01:00
fullName = "Nicolas Bourbaki"
name = "db/nbour"

}, (user){
createId = "simple/root"
createTime = 2020-02-20 15:55:39+01:00
id = 6
modId = "simple/root"
modTime = 2020-02-20 15:55:39+01:00
fullName = "Rudolph Beck-Dülmen"
name = "db/rbeck"

}, (user){
createId = "simple/root"
createTime = 2020-02-20 15:55:39+01:00
id = 7
modId = "simple/root"
modTime = 2020-02-20 15:55:39+01:00

(continues on next page)

40 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

(continued from previous page)

fullName = "IDS reader"
name = "simple/idsreader"

}, (user){
createId = "simple/root"
createTime = 2020-02-20 15:55:39+01:00
id = 8
modId = "simple/root"
modTime = 2020-02-20 15:55:39+01:00
fullName = "Root"
name = "simple/root"

}, (user){
createId = "simple/root"
createTime = 2020-02-20 15:55:39+01:00
id = 9
modId = "simple/root"
modTime = 2020-02-20 15:55:39+01:00
fullName = "User Office"
name = "simple/useroffice"

}, (user){
createId = "simple/root"
createTime = 2020-02-21 18:34:29+01:00
id = 10
modId = "simple/root"
modTime = 2020-02-21 18:34:29+01:00
name = "db/alice"

}]
done

Finally, let’s delete this new object using the delete sub-command. To do this, we must specify the sub-command-
specific configuration variable id (-i ID). In the above output, we can see that the object’s ID is 10, so we
write:

$ python config-sub-commands.py -s myicat_root -e User delete -i 10
deleting the User object with ID 10...
done

1.2 Module reference

This section provides a reference for the python-icat modules.

1.2.1 Modules defining the python-icat API

These modules define classes or functions that common python-icat programs interact with.

icat.client — Provide the Client class

The icat.client defines the Client class that manages the interaction with an ICAT service as a client.

class icat.client.Client(url, idsurl=None, checkCert=True, caFile=None, caPath=None,
sslContext=None, proxy=None, **kwargs)

Bases: suds.client.Client

A client accessing an ICAT service.

This is a subclass of suds.client.Client and inherits most of its behavior. It adds methods for the
instantiation of ICAT entities and implementations of the ICAT API methods.

Parameters

1.2. Module reference 41



python-icat Documentation, Release 0.20.1

• url (str) – The URL pointing to the WSDL of the ICAT service. If the URL does not
contain a path, e.g. contains only a URL scheme and network location part, a default
path is assumend.

• idsurl (str) – The URL pointing to the IDS service. If set, an icat.ids.
IDSClient instance will be created.

• checkCert (bool) – Flag whether the server’s SSL certificate should be verified if
connecting ICAT with HTTPS.

• caFile (str) – Path to a file of concatenated trusted CA certificates. If neither caFile
nor caPath is set, the system’s default certificates will be used.

• caPath (str) – Path to a directory containing trusted CA certificates. If neither caFile
nor caPath is set, the system’s default certificates will be used.

• sslContext (ssl.SSLContext) – A SSL context describing various SSL options
to be used in HTTPS connections. If set, this will override checkCert, caFile, and
caPath.

• proxy (dict) – HTTP proxy settings. A map with the keys http_proxy and
https_proxy and the URL of the respective proxy to use as values.

• kwargs – additional keyword arguments that will be passed to suds.client.
Client, see suds.options.Options for details.

Class attributes

Register
The register of all active clients.

AutoRefreshRemain
Number of minutes to leave in the session before automatic refresh should be called.

Instance attributes

url
The URL to the web service description of the ICAT server.

kwargs
A copy of the kwargs used in the constructor.

apiversion
Version of the ICAT server this client connects to.

autoLogout
Flag whether the client should logout automatically on exit.

ids
The icat.ids.IDSClient instance used for IDS calls.

sessionId
The session id as returned from login().

sslContext
The ssl.SSLContext instance that has been used to establish the HTTPS conection to the ICAT
and IDS server. This is None for old Python versions that do not have the ssl.SSLContext class.

typemap
A dict that maps type names from the ICAT WSDL schema to the corresponding classes in the
icat.entity.Entity hierarchy.

Class and instance methods

classmethod cleanupall()
Cleanup all class instances.

Call cleanup() on all registered class instances, e.g. on all clients that have not yet been cleaned
up.

42 Chapter 1. Parts of the documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/stdtypes.html#dict


python-icat Documentation, Release 0.20.1

cleanup()
Release resources allocated by the client.

Logout from the active ICAT session (if autoLogout is True). The client should not be used any
more after calling this method.

add_ids(url, proxy=None)
Add the URL to an ICAT Data Service.

clone()
Create a clone.

Return a clone of the Client object. That is, a client that connects to the same ICAT server and has
been created with the same kwargs. The clone will be in the state as returned from the constructor. In
particular, it does not share the same session if this client object is logged in.

Returns a clone of the client object.

Return type Client

new(obj, **kwargs)
Instantiate a new icat.entity.Entity object.

If obj is a string, take it as the name of an instance type. Create a new instance object of this type and
lookup the class for the object in the typemap using this type name. If obj is an instance object, look
up its class name in the typemap to determine the class. If obj is None, do nothing and return None.

Parameters

• obj (suds.sudsobject.Object or str) – either a Suds instance object, a name
of an instance type, or None.

• kwargs – attributes passed to the constructor of icat.entity.Entity .

Returns the new entity object or None.

Return type icat.entity.Entity

Raises EntityTypeError – if obj is neither a valid instance object, nor a valid name of
an entity type, nor None.

getEntityClass(name)
Return the Entity class corresponding to a BeanName.

getEntity(obj)
Get the corresponding icat.entity.Entity for an object.

if obj is a fieldSet, return a tuple of the fields. If obj is any other Suds instance object, create a new
entity object with new(). Otherwise do nothing and return obj unchanged.

Parameters obj (suds.sudsobject.Object or any type) – either a Suds instance
object or anything.

Returns the new entity object or obj.

Return type tuple or icat.entity.Entity or any type

Changed in version 0.18.0: add support of fieldSet.

Changed in version 0.18.1: changed the return type from list to tuple in the case of fieldSet.

ICAT API methods

These methods implement the low level API calls of the ICAT server. See the documentation in the ICAT
SOAP Manual. (Note: the Python examples in that manual are based on plain Suds, not on python-icat.)

login(auth, credentials)

logout()

create(bean)

1.2. Module reference 43

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://repo.icatproject.org/site/icat/server/4.10.0/soap.html
https://repo.icatproject.org/site/icat/server/4.10.0/soap.html


python-icat Documentation, Release 0.20.1

createMany(beans)

delete(bean)

deleteMany(beans)

get(query, primaryKey)

getApiVersion()

getAuthenticatorInfo()

getEntityInfo(beanName)

getEntityNames()

getProperties()

getRemainingMinutes()

getUserName()

getVersion()

isAccessAllowed(bean, accessType)

refresh()

search(query)

update(bean)

Custom API methods

These higher level methods build on top of the ICAT API methods.

autoRefresh()
Call refresh() only if needed.

Call refresh() if less then AutoRefreshRemain minutes remain in the current session. Do not
make any client calls if not. This method is supposed to be very cheap if enough time remains in the
session so that it may be called often in a loop without causing too much needless load.

assertedSearch(query, assertmin=1, assertmax=1)
Search with an assertion on the result.

Perform a search and verify that the number of items found lies within the bounds of assertmin and
assertmax. Raise an error if this assertion fails.

Parameters

• query (icat.query.Query or str) – the search query.

• assertmin (int) – minimum number of expected results.

• assertmax (int) – maximum number of expected results. A value of None is
treated as infinity.

Returns search result.

Return type list

Raises

• ValueError – in case of inconsistent arguments.

• SearchAssertionError – if the assertion on the number of results fails.

• ICATError – in case of exceptions raised by the ICAT server.

searchChunked(query, skip=0, count=None, chunksize=100)
Search the ICAT server.

Call the ICAT search() API method, limiting the number of results in each call and repeat the call
as often as needed to retrieve all the results.

44 Chapter 1. Parts of the documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#ValueError


python-icat Documentation, Release 0.20.1

This can be used as a drop in replacement for the search API method most of the times. It avoids the
error if the number of items in the result exceeds the limit imposed by the ICAT server. There are
a few subtle differences though: the query must not contain a LIMIT clause (use the skip and count
arguments instead) and should contain an ORDER BY clause. The return value is a generator yielding
successively the items in the search result rather then a list. The individual search calls are done lazily,
e.g. they are not done until needed to yield the next item from the generator.

Note: The result may be defective (omissions, duplicates) if the content in the ICAT server changes
between individual search calls in a way that would affect the result. It is a common mistake when
looping over items returned from this method to have code with side effects on the search result in the
body of the loop. Example:

# Mark all datasets as complete
# This will *not* work as expected!
query = Query(client, "Dataset", conditions={

"complete": "= False"
}, includes="1", order=["id"])
for ds in client.searchChunked(query):

ds.complete = True
ds.update()

This should rather be formulated as:

# Mark all datasets as complete
# This version works!
query = Query(client, "Dataset", includes="1", order=["id"])
for ds in client.searchChunked(query):

if not ds.complete:
continue

ds.complete = True
ds.update()

Parameters

• query (icat.query.Query or str) – the search query.

• skip (int) – offset from within the full list of available results.

• count (int) – maximum number of items to return. A value of None means no
limit.

• chunksize (int) – number of items to query in each search call. This is an internal
tuning parameter and does not affect the result.

Returns a generator that successively yields the items in the search result.

Return type generator

searchUniqueKey(key, objindex=None)
Search the object that belongs to a unique key.

This is in a sense the inverse method to icat.entity.Entity.getUniqueKey(), the key
must previously have been generated by it. This method searches the entity object that the key has
been generated for from the server.

if objindex is not None, it is used as a cache of previously retrieved objects. It must be a dict that
maps keys to entity objects. The object retrieved by this method call will be added to this index.

Parameters

• key (str) – the unique key of the object to search for.

• objindex (dict) – cache of entity objects.

1.2. Module reference 45

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict


python-icat Documentation, Release 0.20.1

Returns the object corresponding to the key.

Return type icat.entity.Entity

Raises

• SearchResultError – if the object has not been found.

• ValueError – if the key is not well formed.

searchMatching(obj, includes=None)
Search the matching object.

Search the object from the ICAT server that matches the given object in the uniqueness constraint.

>>> dataset = client.new("dataset", investigation=inv, name=dsname)
>>> dataset = client.searchMatching(dataset)
>>> dataset.id
172383

Parameters

• obj (icat.entity.Entity) – an entity object having the attrinutes for the
uniqueness constraint set accordingly.

• includes (iterable of str) – list of related objects to add to the INCLUDE clause
of the search query. See icat.query.Query.addIncludes() for details.

Returns the corresponding object.

Return type icat.entity.Entity

Raises

• SearchResultError – if the object has not been found.

• ValueError – if the object’s class does not have a uniqueness constraint or if any
attribute needed for the constraint is not set.

createUser(name, search=False, **kwargs)
Search a user by name or create a new user.

If search is True search a user by the given name. If search is False or no user is found, create a
new user.

Parameters

• name (str) – username.

• search (bool) – flag whether a user should be searched first.

• kwargs – attributes of the user passed to new.

Returns the user.

Return type icat.entity.Entity

createGroup(name, users=())
Create a group and add users to it.

Parameters

• name (str) – the name of the group.

• users (list of icat.entity.Entity) – a list of users.

Returns the group.

Return type icat.entity.Entity

createRules(crudFlags, what, group=None)
Create access rules.

46 Chapter 1. Parts of the documentation

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list


python-icat Documentation, Release 0.20.1

Parameters

• crudFlags (str) – access mode.

• what (list) – list of items subject to the rule. The items must be either ICAT search
expression strings or icat.query.Query objects.

• group (icat.entity.Entity) – the group that should be granted access or
None for everybody.

Returns list of the ids of the created rules.

Return type list of int

Custom IDS methods

These methods provide the most commonly needed IDS functionality and build on top of the low level IDS
API methods provided by icat.ids.IDSClient.

putData(infile, datafile)
Upload a datafile to IDS.

The content of the file to upload is read from infile, either directly if it is an open file, or a file by that
name will be opened for reading.

The datafile object must be initialized but not yet created at the ICAT server. It will be created by the
IDS. The ids of the Dataset and the DatafileFormat as well as the attributes description, doi, datafile-
CreateTime, and datafileModTime will be taken from datafile. If datafileModTime is not set, the
method will try to os.fstat() infile and use the last modification time from the file system, if
available. If datafileCreateTime is not set, it will be set to datafileModTime.

Note that only the attributes datafileFormat, dataset, description, doi, datafileCreateTime, and datafile-
ModTime of datafile will be taken into account as described above. All other attributes are ignored
and the Datafile object created in the ICAT server might end up with different values for those other
attribues.

Parameters

• infile (file or str) – either a file opened for reading or a file name.

• datafile (icat.entity.Entity) – A Datafile object.

Returns The Datafile object created by IDS.

Return type icat.entity.Entity

getData(objs, compressFlag=False, zipFlag=False, outname=None, offset=0)
Retrieve the requested data from IDS.

The data objects to retrieve are given in objs. This can be any combination of single Datafiles, Datasets,
or complete Investigations.

Parameters

• objs (dict, list of icat.entity.Entity , icat.ids.
DataSelection, or str) – either a dict having some of the keys investigationIds,
datasetIds, and datafileIds with a list of object ids as value respectively, or a list of
entity objects, or a data selection, or an id returned by prepareData().

• compressFlag (bool) – flag whether to use a zip format with an implementation
defined compression level, otherwise use no (or minimal) compression.

• zipFlag (bool) – flag whether return a single datafile in zip format. For multiple
files zip format is always used.

• outname (str) – the preferred name for the downloaded file to specify in the
Content-Disposition header.

• offset (int) – if larger then zero, add Range header to the HTTP request with the
indicated bytes offset.

1.2. Module reference 47

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/os.html#os.fstat
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


python-icat Documentation, Release 0.20.1

Returns a file-like object as returned by urllib.request.OpenerDirector.
open().

getDataUrl(objs, compressFlag=False, zipFlag=False, outname=None)
Get the URL to retrieve the requested data from IDS.

The data objects to retrieve are given in objs. This can be any combination of single Datafiles, Datasets,
or complete Investigations.

Note that the URL contains the session id of the current ICAT session. It will become invalid if the
client logs out.

Parameters

• objs (dict, list of icat.entity.Entity , icat.ids.
DataSelection, or str) – either a dict having some of the keys investigationIds,
datasetIds, and datafileIds with a list of object ids as value respectively, or a list of
entity objects, or a data selection, or an id returned by prepareData().

• compressFlag (bool) – flag whether to use a zip format with an implementation
defined compression level, otherwise use no (or minimal) compression.

• zipFlag (bool) – flag whether return a single datafile in zip format. For multiple
files zip format is always used.

• outname (str) – the preferred name for the downloaded file to specify in the
Content-Disposition header.

Returns the URL for the data at the IDS.

Return type str

prepareData(objs, compressFlag=False, zipFlag=False)
Prepare data at IDS to be retrieved in subsequent calls.

The data objects to retrieve are given in objs. This can be any combination of single Datafiles, Datasets,
or complete Investigations.

Parameters

• objs (dict, list of icat.entity.Entity , or icat.ids.
DataSelection) – either a dict having some of the keys investigationIds,
datasetIds, and datafileIds with a list of object ids as value respectively, or a list of
entity objects, or a data selection.

• compressFlag (bool) – flag whether to use a zip format with an implementation
defined compression level, otherwise use no (or minimal) compression.

• zipFlag (bool) – flag whether return a single datafile in zip format. For multiple
files zip format is always used.

Returns preparedId, an opaque string which may be used as an argument to
isDataPrepared() and getData() calls.

Return type str

isDataPrepared(preparedId)
Check if prepared data is ready at IDS.

Parameters preparedId (str) – the id returned by prepareData().

Returns True if the data is ready, otherwise False.

Return type bool

getPreparedData(preparedId, outname=None, offset=0)
Retrieve prepared data from IDS.

Parameters

• preparedId (str) – the id returned by prepareData().

48 Chapter 1. Parts of the documentation

https://docs.python.org/3/library/urllib.request.html#urllib.request.OpenerDirector.open
https://docs.python.org/3/library/urllib.request.html#urllib.request.OpenerDirector.open
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


python-icat Documentation, Release 0.20.1

• outname (str) – the preferred name for the downloaded file to specify in the
Content-Disposition header.

• offset (int) – if larger then zero, add Range header to the HTTP request with the
indicated bytes offset.

Returns a file-like object as returned by urllib.request.OpenerDirector.
open().

Deprecated since version 0.17.0: Call getData() instead.

getPreparedDataUrl(preparedId, outname=None)
Get the URL to retrieve prepared data from IDS.

Parameters

• preparedId (str) – the id returned by prepareData().

• outname (str) – the preferred name for the downloaded file to specify in the
Content-Disposition header.

Returns the URL for tha data at the IDS.

Return type str

Deprecated since version 0.17.0: Call getDataUrl() instead.

deleteData(objs)
Delete data from IDS.

The data objects to delete are given in objs. This can be any combination of single Datafiles, Datasets,
or complete Investigations.

Parameters objs (dict, list of icat.entity.Entity , or icat.ids.
DataSelection) – either a dict having some of the keys investigationIds, datasetIds,
and datafileIds with a list of object ids as value respectively, or a list of entity objects, or
a data selection.

icat.config — Manage configuration

This module reads configuration variables from different sources, such as command line arguments, environment
variables, and configuration files. A set of configuration variables that any ICAT client program typically needs
is predefined. Custom configuration variables may be added. The main class that client programs interact with is
icat.config.Config.

icat.config.cfgdirs
Search path for the configuration file. The value depends on the operating system.

icat.config.cfgfile = 'icat.cfg'
Configuration file name

icat.config.defaultsection = None
Default value for configSection

icat.config.boolean(value)
Test truth value.

Convert the string representation of a truth value, such as ‘0’, ‘1’, ‘yes’, ‘no’, ‘true’, or ‘false’ to bool.
This function is suitable to be passed as type to icat.config.BaseConfig.add_variable().

icat.config.flag
Variant of icat.config.boolean() that defines two command line arguments to switch the value on
and off respectively. May be passed as type to icat.config.BaseConfig.add_variable().

icat.config.cfgpath(p)
Search for a file in some default directories.

1.2. Module reference 49

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/urllib.request.html#urllib.request.OpenerDirector.open
https://docs.python.org/3/library/urllib.request.html#urllib.request.OpenerDirector.open
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool


python-icat Documentation, Release 0.20.1

The argument p should be a file path name. If p is absolute, it will be returned unchanged. Otherwise, p
will be resolved against the directories in icat.config.cfgdirs in reversed order. If a file with the
resulting path is found to exist, this path will be returned, first match wins. If no file exists in any of the
directories, p will be returned unchanged.

This function is suitable to be passed as type argument to icat.config.BaseConfig.
add_variable().

class icat.config.ConfigVariable(name, envvar, optional, default, convert, subst)
Bases: object

Describe a configuration variable. Configuration variables are created in icat.config.BaseConfig.
add_variable() and control the behavior of icat.config.Config.getconfig().

class icat.config.ConfigSubCmds(name, optional, config, subparsers)
Bases: icat.config.ConfigVariable

A special configuration variable that selects a subcommand. These subcommand configuration variables are
created in icat.config.BaseConfig.add_subcommand(). Possible values for the subcommand
are then registered calling the add_subconfig() method.

add_subconfig(name, arg_kws=None, func=None)
Add a comand to a set of subcommands defined with icat.config.BaseConfig.
add_subcommands().

Parameters

• name (str) – the name of the command.

• arg_kws (dict) – constructor arguments to be passed to argparse.
ArgumentParser() to create the subparser. Mostly useful to set help.

• func – any custom value. The configuration value representing the subcommands
in the icat.config.Configuration object returned by icat.config.
Config.getconfig() will have an attribute func with this value if this command
has been selected. Most useful to set this to a callable that implements the command.

Returns a subconfig object that allows to set specific configuration variables for the com-
mand.

Return type icat.config.SubConfig

Raises ValueError – if the name is already defined.

class icat.config.Configuration(config)
Bases: object

Provide a name space to store the configuration.

icat.config.Config.getconfig() returns a Configuration object having the configuration values
stored in the respective attributes.

as_dict()
Return the configuration as a dict.

class icat.config.BaseConfig(argparser)
Bases: object

Abstract base class for icat.config.Config and icat.config.SubConfig. This class defines
the common API. It is not intended to be instantiated directly.

Class attributes (read only):

ReservedVariables = ['configDir', 'credentials']
Reserved names of configuration variables.

Instance methods:

50 Chapter 1. Parts of the documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object


python-icat Documentation, Release 0.20.1

add_variable(name, arg_opts=(), arg_kws=None, envvar=None, optional=False, de-
fault=None, type=None, subst=False)

Defines a new configuration variable.

Note that the value of some configuration variable may influence the evaluation of other variables.
For instance, if configFile and configSection are set, the values for other configuration variables are
searched in this configuration file. Thus, the evaluation order of the configuration variables is im-
portant. The variables are evaluated in the order that this method is called to define the respective
variable.

Call argparse.ArgumentParser.add_argument() to add a new command line argument if
arg_opts is set.

Parameters

• name (str) – the name of the variable. This will be used as the name of
the attribute of icat.config.Configuration returned by icat.config.
Config.getconfig() and as the name of the option to be looked for in the
configuration file. The name must be unique and not in icat.config.Config.
ReservedVariables. If arg_opts corresponds to a positional argument, the name
must be equal to this argument name.

• arg_opts (tuple of str) – command line flags associated with this vari-
able. This will be passed as name or flags to argparse.ArgumentParser.
add_argument().

• arg_kws (dict) – keyword arguments to be passed to argparse.
ArgumentParser.add_argument().

• envvar (str) – name of the environment variable or None. If set, the value for the
variable may be set from the respective environment variable.

• optional (bool) – flag wether the configuration variable is optional. If set to
False and default is None the variable is mandatory.

• default – default value.

• type (callable) – type to which the value should be converted. This must be
a callable that accepts one string argument and returns the desired value. Python
builtins int and float or some standard library classes such as Path are fine. If
set to None, the string value is taken as is. If applicable, the default value will also be
passed through this conversion. The special value icat.config.flag may also
be used to indicate a variant of icat.config.boolean().

• subst (bool) – flag wether substitution of other configuration variables using the
% interpolation operator shall be performed. If set to True, the value may contain
conversion specifications such as %(othervar)s. This will then be substituted by
the value of othervar. The referenced variable must have been defined earlier.

Returns the new configuration variable object.

Return type icat.config.ConfigVariable

Raises

• RuntimeError – if this objects already has subcommands defined with icat.
config.BaseConfig.add_subcommands().

• ValueError – if the name is not valid.

See the documentation of the argparse standard library module for details on arg_opts
and arg_kws.

add_subcommands(name=’subcmd’, arg_kws=None, optional=False)
Defines a new configuration variable to select subcommands.

1.2. Module reference 51

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/argparse.html#module-argparse


python-icat Documentation, Release 0.20.1

Note: adding a subcommand variable must be the last action of this kind on a icat.config.
BaseConfig object. Adding any more configuration variables or subcommand variables subse-
quently is not allowed. As a consequence, a icat.config.BaseConfig object may not have
more then one subcommand variable.

Parameters

• name (str) – the name of the variable. This will be used as the name of
the attribute of icat.config.Configuration returned by icat.config.
Config.getconfig() and as the name of the option to be looked for in the
configuration file. The name must be unique and not in icat.config.Config.
ReservedVariables.

• arg_kws (dict) – keyword arguments to be passed to argparse.
ArgumentParser.add_subparsers(). Mostly useful to set title or help.
Note that dest will be overridden and set to the value of name.

• optional (bool) – flag wether providing a subcommand is optional.

Returns the new subcommand object.

Return type icat.config.ConfigSubCmd

Raises

• RuntimeError – if this objects already has subcommands.

• ValueError – if the name is not valid.

See the documentation of the argparse standard library module for details on arg_kws.

class icat.config.Config(defaultvars=True, needlogin=True, ids=’optional’, args=None)
Bases: icat.config.BaseConfig

Set configuration variables.

Allow configuration variables to be set via command line arguments, environment variables, configuration
files, and default values, in this order. In the case of a hidden credential such as a password, the user may also
be prompted for a value. The first value found will be taken. Command line arguments and configuration
files are read using the standard Python library modules argparse and configparser respectively, see
the documentation of these modules for details on how to setup custom arguments or for the format of the
configuration files.

The constructor sets up some predefined configuration variables.

Parameters

• defaultvars (bool) – if set to False, no default configuration variables other then
configFile and configSection will be defined. The arguments needlogin and ids will be
ignored in this case.

• needlogin (bool) – if set to False, the configuration variables auth, username,
password, promptPass, and credentials will be left out.

• ids (bool or str) – the configuration variable idsurl will not be set up at all, or be set
up as a mandatory, or as an optional variable, if this is set to False, to ‘mandatory’, or
to ‘optional’ respectively.

• args (list of str) – list of command line arguments or None. If not set, the com-
mand line arguments will be taken from sys.argv.

Instance attributes (read only):

client
The icat.client.Client object initialized according to the configuration. This is also the first
element in the return value if getconfig().

52 Chapter 1. Parts of the documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_subparsers
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_subparsers
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/configparser.html#module-configparser
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/sys.html#sys.argv


python-icat Documentation, Release 0.20.1

client_kwargs
The keyword arguments that have been passed to the constructor of client.

Instance methods:

getconfig()
Get the configuration.

Parse the command line arguments, evaluate environment variables, read the configuration file, and
apply default values (in this order) to get the value for each defined configuration variable. The first
defined value found will be taken.

Returns a tuple with two items, a client initialized to connect to an ICAT server according
to the configuration and an object having the configuration values set as attributes. The
client will be None if the defaultvars constructor argument was False.

Return type tuple of icat.client.Client and icat.config.
Configuration

Raises ConfigError – if configFile is defined but the file by this name can not be read, if
configSection is defined but no section by this name could be found in the configuration
file, if an invalid value is given to a variable, or if a mandatory variable is not defined.

class icat.config.SubConfig(argparser, parent, name=None, func=None)
Bases: icat.config.BaseConfig

Set configuration variables for a subcommand.

These subconfig objects are created in icat.config.ConfigSubCmds.add_subconfig(). Spe-
cific configuration variables for the respective subcommand may be added calling the add_variable()
method inherited from icat.config.BaseConfig.

Predefined configuration variables

The constructor of icat.config.Config sets up the following set of configuration variables that an ICAT
client typically needs:

configFile Name of the configuration file to read.

configSection Name of the section in the configuration file to apply. If not set, no values will be read
from the configuration file.

url URL to the web service description of the ICAT server.

idsurl URL to the ICAT Data Service.

checkCert Verify the server certificate for HTTPS connections. Note that this requires either Python
2.7.9 or 3.2 or newer. With older Python version, this option has no effect.

http_proxy Proxy to use for HTTP requests.

https_proxy Proxy to use for HTTPS requests.

no_proxy Comma separated list of domain extensions proxy should not be used for.

auth Name of the authentication plugin to use for login.

username The ICAT user name.

password The user’s password. Will prompt for the password if not set.

promptPass Prompt for the password.

A few derived variables are also set in icat.config.Config.getconfig():

configDir the directory where (the last) configFile has been found.

1.2. Module reference 53

https://docs.python.org/3/library/stdtypes.html#tuple


python-icat Documentation, Release 0.20.1

credentials contains the credentials needed for the indicated authenticator (username and password if
authenticator information is not available) suitable to be passed to icat.client.Client.
login().

Deprecated since version 0.13: The derived variable configDir is deprecated and will be removed in version 1.0.

The command line arguments, environment variables, and default values for the configuration variables are as
follows:

Name Command line Environment De-
fault

Manda-
tory

Notes

config-
File

-c, --configfile ICAT_CFG de-
pends

no (1)

config-
Section

-s, --configsection ICAT_CFG_SECTIONNone no (2)

url -w, --url ICAT_SERVICE yes
idsurl --idsurl ICAT_DATA_SERVICENone depends (3)
check-
Cert

--check-certificate,
--no-check-certificate

True no

http_proxy --http-proxy http_proxy None no
https_proxy --https-proxy https_proxy None no
no_proxy --no-proxy no_proxy None no
auth -a, --auth ICAT_AUTH yes (4)
user-
name

-u, --user ICAT_USER yes (4),(5)

password -p, --pass inter-
active

yes (4),(5),(6)

prompt-
Pass

-P, --prompt-pass False no (4),(5),(6)

Mandatory means that an error will be raised in icat.config.Config.getconfig() if no value is found
for the configuration variable in question.

Notes:

1. The default value for configFile depends on the operating system.

2. The default value for configSection may be changed in icat.config.defaultsection.

3. The configuration variable idsurl will not be set up at all, or be set up as a mandatory, or as an optional vari-
able, if the ids argument to the constructor of icat.config.Config is set to False, to “mandatory”,
or to “optional” respectively.

4. If the argument needlogin to the constructor of icat.config.Config is set to False, the configura-
tion variables auth, username, password, promptPass, and credentials will be left out.

5. If the ICAT server supports the icat.client.Client.getAuthenticatorInfo() API call
(icat.server 4.9.0 and newer), the server will be queried about the credentials required for the authenti-
cator indicated by the value of auth. The corresponding variables will be setup in the place of username and
password. The variable promptPass will be setup only if any of the credentials is marked as hidden in the
authenticator information.

6. The user will be prompted for the password if promptPass is True, if no password is provided in the com-
mand line or the configuration file, or if the username, but not the password has been provided by command
line arguments. This applies accordingly to credentials marked as hidden if authenticator information is
available from the server.

If the argument defaultvars to the constructor of icat.config.Config is set to False, no default configura-
tion variables other then configFile and configSection will be defined. The configuration mechanism is still intact.
In particular, custom configuration variables may be defined and reading the configuration file still works.

54 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

icat.entities — Provide classes corresponding to the ICAT schema

Provide the classes corresponding to the entities in the ICAT schema.

Entity classes defined in this module are derived from the abstract base class icat.entity.Entity . They
override the class attributes icat.entity.Entity.BeanName, icat.entity.Entity.Constraint,
icat.entity.Entity.InstAttr, icat.entity.Entity.InstRel, icat.entity.Entity.
InstMRel, icat.entity.Entity.AttrAlias, and icat.entity.Entity.SortAttrs as appro-
priate.

Furthermore, custom methods are added to a few selected entity classes.

class icat.entities.GroupingMixin
Bases: object

Mixin class to define custom methods for Grouping objects.

addUsers(users)
Add users to the group.

getUsers(attribute=None)
Get the users in the group. If attribute is given, return the corresponding attribute for all users in the
group, otherwise return the users.

class icat.entities.InstrumentMixin
Bases: object

Mixin class to define custom methods for Instrument objects.

addInstrumentScientists(users)
Add instrument scientists to the instrument.

getInstrumentScientists(attribute=None)
Get instrument scientists of the instrument. If attribute is given, return the corresponding attribute for
all users related to the instrument, otherwise return the users.

class icat.entities.InvestigationMixin
Bases: object

Mixin class to define custom methods for Investigation objects.

addInstrument(instrument)
Add an instrument to the investigation.

addKeywords(keywords)
Add keywords to the investigation.

addInvestigationUsers(users, role=’Investigator’)
Add investigation users.

class icat.entities.Investigation44Mixin
Bases: icat.entities.InvestigationMixin

Mixin class to define custom methods for Investigation objects for ICAT version 4.4.0 and later.

addInvestigationGroup(group, role=None)
Add an investigation group.

icat.entities.getTypeMap(client)
Generate a type map for the client.

Query the ICAT server about the entity classes defined in the schema and their attributes and relations.
Generate corresponding Python classes representing these entities. The Python classes are based on icat.
entity.Entity .

Parameters client (icat.client.Client) – a client object configured to connect to an
ICAT server.

1.2. Module reference 55

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object


python-icat Documentation, Release 0.20.1

Returns a mapping of type names from the ICAT web service description to the corresponding
Python classes. This mapping may be used as icat.client.Client.typemap for
the client object.

Return type dict

icat.entity — Provide the Entity class

class icat.entity.Entity(client, instance, **kwargs)
Bases: object

The base of the classes representing the entities in the ICAT schema.

Entity is the abstract base for a hierarchy of classes representing the entities in the ICAT schema. It imple-
ments the basic behavior of these classes.

Each Entity object is connected to an instance of suds.sudsobject.Object, named instance in the
following. Instances are created by Suds based on the ICAT WSDL schema. Entity objects mimic the behav-
ior of the corresponding instance. Attribute accesses are proxied to the instance. A transparent conversion
between Entity objects and Suds instances is performed where appropriate.

BeanName = None
Name of the entity in the ICAT schema, None for abstract classes.

Constraint = ('id',)
Attribute or relation names that form a uniqueness constraint.

SelfAttr = frozenset({'validate', 'client', 'instance'})
Attributes stored in the Entity object itself.

InstAttr = frozenset({'id'})
Attributes of the entity in the ICAT schema, stored in the instance.

MetaAttr = frozenset({'createId', 'modId', 'modTime', 'createTime'})
Readonly meta attributes, retrieved from the instance.

InstRel = frozenset()
Many to one relationships in the ICAT schema.

InstMRel = frozenset()
One to many relationships in the ICAT schema.

AttrAlias = {}
Map of alias names for attributes and relationships.

SortAttrs = None
List of attributes used for sorting. Uses Constraint if None.

validate = None
Hook to add a pre create validation method.

This may be set to a function that expects one argument, the entity object. It will then be called before
creating the object at the ICAT server. The function is expected to raise an exception (preferably
ValueError) in case of validation errors.

classmethod getInstance(obj)
Get the corresponding instance from an object.

classmethod getInstances(objs)
Translate a list of objects into the list of corresponding instances.

classmethod getAttrInfo(client, attr)
Get information on an attribute.

Query the EntityInfo of the entity from the ICAT server and retrieve information on one of the attributes
from it.

56 Chapter 1. Parts of the documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object


python-icat Documentation, Release 0.20.1

Parameters

• client (icat.client.Client) – the ICAT client.

• attr (str) – name of the attribute.

Returns information on the attribute.

Raises ValueError – if this is an abstract entity class or if no attribute by that name is
found.

classmethod getNaturalOrder(client)
Return a natural order for this class.

The order is a list of attributes suitable to be used in a ORDER BY clause in an ICAT search expression.
The natural order is the one that is as close as possible to sorting the objects by the __sortkey__().
It is based on Constraint or the SortAttrs, if the latter are defined. In any case, one to many
relationships and nullable many to one relationships are removed from the list.

copy()
Return a shallow copy of this entity object.

Create a new object that has all attributes set to a copy of the corresponding values of this object. The
relations are copied by reference, i.e. the original and the copy refer to the same related object.

>>> inv = client.new("investigation", name="Investigation A")
>>> ds = client.new("dataset", investigation=inv, name="Dataset X")
>>> cds = ds.copy()
>>> cds.name
'Dataset X'
>>> cds.investigation.name
'Investigation A'
>>> cds.name = "Dataset Y"
>>> cds.investigation.name = "Investigation B"
>>> ds.name
'Dataset X'
>>> ds.investigation.name
'Investigation B'

__sortkey__()
Return a key for sorting.

This is suitable to be passed as key to the list.sort() method. E.g. if l is a list of Entity
objects, you can sort it using:

>>> l.sort(key=icat.entity.Entity.__sortkey__)

as_dict()
Return a dict with the object’s attributes.

getAttrType(attr)
Get the type of an attribute.

Query this object’s EntityInfo from the ICAT server and retrieve the type of one of the attributes from
it. In the case of a relation attribute, this yields the BeanName of the related object.

Parameters attr (str) – name of the attribute.

Returns name of the attribute type.

Return type str

Raises ValueError – if no attribute by that name is found.

truncateRelations()
Delete all relationships.

1.2. Module reference 57

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError


python-icat Documentation, Release 0.20.1

Delete all attributes having relationships to other objects from this object. Note that this is a local
operation on the object in the client only. It does not affect the corresponding object at the ICAT
server. This is useful if you only need to keep the object’s attributes but not the (possibly large) tree of
related objects in local memory.

getUniqueKey(keyindex=None)
Return a unique key.

The key is a string that is guaranteed to be unique for all entities in the ICAT. All attributes that
form the uniqueness constraint must be set. A icat.client.Client.search() or icat.
client.Client.get() with the appropriate include clause may be required before calling this
method.

if keyindex is not None, it is used as a cache of previously generated keys. It must be a dict that maps
entity ids to the keys returned by previous calls of getUniqueKey() on other entity objects. The
newly generated key will be added to this index.

Parameters keyindex (dict) – cache of generated keys.

Returns a unique key.

Return type str

Raises DataConsistencyError – if a relation required in a constraint is not set.

create()
Call icat.client.Client.create() to create the object in the ICAT.

update()
Call icat.client.Client.update() to update the object in the ICAT.

get(query=None)
Call icat.client.Client.get() to get the object from the ICAT.

icat.exception — Exception handling

This module defines Python counterparts of the exceptions raised by ICAT or IDS server, as well as exceptions
raised in python-icat.

Helper

icat.exception.stripCause(e)
Try to suppress misleading context from an exception.

Deprecated since version 0.14.0: Not needed any more, embedded in icat.exception.
_BaseException now.

exception icat.exception._BaseException(*args)
Bases: Exception

An exception that tries to suppress misleading context.

Exception Chaining and Embedded Tracebacks has been introduced with Python 3. Unfortunately the result
is completely misleading most of the times. This class tries to strip the context from the exception traceback.

This is the common base class for for all exceptions defined in icat.exception, it is not intented to be
raised directly.

Exceptions raised by the ICAT or IDS server

exception icat.exception.ServerError(error, status=None)
Bases: icat.exception._BaseException

58 Chapter 1. Parts of the documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://www.python.org/dev/peps/pep-3134


python-icat Documentation, Release 0.20.1

Errors raised by either the ICAT or the IDS server.

This is the common base class for icat.exception.ICATError and icat.exception.
IDSError, it is not intented to be raised directly.

exception icat.exception.ICATError(error, status=None)
Bases: icat.exception.ServerError

Base class for the errors raised by the ICAT server.

exception icat.exception.ICATParameterError(error, status=None)
Bases: icat.exception.ICATError

Generally indicates a problem with the arguments made to a call.

exception icat.exception.ICATInternalError(error, status=None)
Bases: icat.exception.ICATError

May be caused by network problems, database problems, GlassFish problems or bugs in ICAT.

exception icat.exception.ICATPrivilegesError(error, status=None)
Bases: icat.exception.ICATError

Indicates that the authorization rules have not matched your request.

exception icat.exception.ICATNoObjectError(error, status=None)
Bases: icat.exception.ICATError

Is thrown when something is not found.

exception icat.exception.ICATObjectExistsError(error, status=None)
Bases: icat.exception.ICATError

Is thrown when trying to create something but there is already one with the same values of the constraint
fields.

exception icat.exception.ICATSessionError(error, status=None)
Bases: icat.exception.ICATError

Is used when the sessionId you have passed into a call is not valid or if you are unable to authenticate.

exception icat.exception.ICATValidationError(error, status=None)
Bases: icat.exception.ICATError

Marks an exception which was thrown instead of placing the database in an invalid state.

exception icat.exception.ICATNotImplementedError(error, status=None)
Bases: icat.exception.ICATError

exception icat.exception.IDSError(error, status=None)
Bases: icat.exception.ServerError

Base class for the errors raised by the IDS server.

exception icat.exception.IDSBadRequestError(error, status=None)
Bases: icat.exception.IDSError

Any kind of bad input parameter.

exception icat.exception.IDSDataNotOnlineError(error, status=None)
Bases: icat.exception.IDSError

The requested data are not on line.

exception icat.exception.IDSInsufficientPrivilegesError(error, status=None)
Bases: icat.exception.IDSError

You are denied access to the data.

exception icat.exception.IDSInsufficientStorageError(error, status=None)
Bases: icat.exception.IDSError

1.2. Module reference 59



python-icat Documentation, Release 0.20.1

There is not sufficient physical storage or you have exceeded some quota.

exception icat.exception.IDSInternalError(error, status=None)
Bases: icat.exception.IDSError

Some kind of failure in the server or in communicating with the server.

exception icat.exception.IDSNotFoundError(error, status=None)
Bases: icat.exception.IDSError

The requested data do not exist.

exception icat.exception.IDSNotImplementedError(error, status=None)
Bases: icat.exception.IDSError

Use of some functionality that is not supported by the implementation.

icat.exception.translateError(error, status=None, server=’ICAT’)
Translate an error from ICAT or IDS to the corresponding exception.

Exceptions raised by python-icat

exception icat.exception.InternalError(*args)
Bases: icat.exception._BaseException

An error that reveals a bug in python-icat.

exception icat.exception.ConfigError(*args)
Bases: icat.exception._BaseException

Error getting configuration options.

exception icat.exception.QueryWarning
Bases: Warning

Warning while building a query.

New in version 0.19.0.

exception icat.exception.QueryNullableOrderWarning(attr)
Bases: icat.exception.QueryWarning

Warn about using a nullable many to one relation for ordering.

Changed in version 0.19.0: Inherit from QueryWarning.

exception icat.exception.QueryOneToManyOrderWarning(attr)
Bases: icat.exception.QueryWarning

Warn about using a one to many relation for ordering.

New in version 0.19.0.

exception icat.exception.ClientVersionWarning(version=None, comment=None)
Bases: Warning

Warn that the version of the ICAT server is not supported by the client.

exception icat.exception.ICATDeprecationWarning(feature, version=None)
Bases: DeprecationWarning

Warn about using an API feature that may get removed in future ICAT server versions.

exception icat.exception.EntityTypeError(*args)
Bases: icat.exception._BaseException, TypeError

An invalid entity type has been used.

Changed in version 0.18.0: Inherit from TypeError.

60 Chapter 1. Parts of the documentation

https://docs.python.org/3/library/exceptions.html#Warning
https://docs.python.org/3/library/exceptions.html#Warning
https://docs.python.org/3/library/exceptions.html#DeprecationWarning
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError


python-icat Documentation, Release 0.20.1

exception icat.exception.VersionMethodError(method, version=None, ser-
vice=’ICAT’)

Bases: icat.exception._BaseException

Call of an API method that is not supported in the version of the server.

exception icat.exception.SearchResultError(*args)
Bases: icat.exception._BaseException

A search result does not conform to what should have been expected.

exception icat.exception.SearchAssertionError(query, assertmin, assertmax, num)
Bases: icat.exception.SearchResultError

A search result does not conform to an assertion.

This exception is thrown when the number of objects found on a search does not lie within the bounds of an
assertion, see icat.client.Client.assertedSearch().

exception icat.exception.DataConsistencyError(*args)
Bases: icat.exception._BaseException

Some data is not consistent with rules or constraints.

exception icat.exception.IDSResponseError(*args)
Bases: icat.exception._BaseException

The response from the IDS was not what should have been expected.

exception icat.exception.GenealogyError(*args)
Bases: icat.exception._BaseException

Error in the genealogy of entity types.

Deprecated since version 0.17: Only used in icat.icatcheck which in turn is deprecated.

Exception hierarchy

The class hierarchy for the exceptions is:

Exception
+-- ServerError
| +-- ICATError
| | +-- ICATParameterError
| | +-- ICATInternalError
| | +-- ICATPrivilegesError
| | +-- ICATNoObjectError
| | +-- ICATObjectExistsError
| | +-- ICATSessionError
| | +-- ICATValidationError
| | +-- ICATNotImplementedError
| +-- IDSError
| +-- IDSBadRequestError
| +-- IDSDataNotOnlineError
| +-- IDSInsufficientPrivilegesError
| +-- IDSInsufficientStorageError
| +-- IDSInternalError
| +-- IDSNotFoundError
| +-- IDSNotImplementedError
+-- InternalError
+-- ConfigError
+-- TypeError
| +-- EntityTypeError
+-- VersionMethodError
+-- SearchResultError

(continues on next page)

1.2. Module reference 61



python-icat Documentation, Release 0.20.1

(continued from previous page)

| +-- SearchAssertionError
+-- DataConsistencyError
+-- IDSResponseError
+-- GenealogyError
+-- Warning

+-- QueryWarning
| +-- QueryNullableOrderWarning
| +-- QueryOneToManyOrderWarning
+-- ClientVersionWarning
+-- DeprecationWarning

+-- ICATDeprecationWarning

Here, Exception, TypeError, Warning, and DeprecationWarning are build-in exceptions from the
Python standard library.

icat.ids — Provide the IDSClient class

This module defines the IDSClient class that connects to an ICAT Data Service (IDS) as a client.

class icat.ids.DataSelection(objs=None)
Bases: object

A set of data to be processed by the ICAT Data Service.

This can be passed as the selection argument to icat.ids.IDSClientmethod calls. The objs argument
is passed to the extend() method.

extend(objs)
Add objs to the DataSelection.

Parameters objs (dict, list of icat.entity.Entity , or DataSelection) –
either a dict having some of the keys investigationIds, datasetIds, and datafileIds with a
list of object ids as value respectively, or a list of entity objects, or another data selection.

class icat.ids.IDSClient(url, sessionId=None, sslContext=None, proxy=None)
Bases: object

A client accessing an ICAT Data Service.

The attribute sessionId must be set to a valid ICAT session id from the ICAT client.

ping()
Check that the server is alive and is an IDS server.

getApiVersion()
Get the version of the IDS server.

Note: the getApiVersion call has been added in IDS server version 1.3.0. For older servers, try to guess
the server version from features visible in the API. Obviously this cannot always be accurate as we
cannot distinguish server version with no visible API changes. In particular, versions older then 1.2.0
will always reported as 1.0.0. Nevertheless, the result of the guess should be fair enough for most use
cases.

version()
Get the version of the IDS server.

Note: the version call has been added in IDS server version 1.8.0, deprecating getApiVersion at the
same time. For older servers, we fall back to getApiVersion to emulate this call. Note furthermore that
version returns a dict, while getApiVersion returns the plain version number as a string.

getIcatUrl()
Get the URL of the ICAT server connected to this IDS.

isReadOnly()
See if the server is configured to be readonly.

62 Chapter 1. Parts of the documentation

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#Warning
https://docs.python.org/3/library/exceptions.html#DeprecationWarning
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object


python-icat Documentation, Release 0.20.1

isTwoLevel()
See if the server is configured to use both main and archive storage.

getServiceStatus()
Return information about what the IDS is doing.

If all lists are empty it is quiet. To use this call, the user represented by the sessionId must be in the
set of rootUserNames defined in the IDS configuration.

getSize(selection)
Return the total size of the datafiles.

getStatus(selection)
Return the status of data.

archive(selection)
Archive data.

restore(selection)
Restore data.

write(selection)
Write data.

reset(selection)
Reset data so that they can be queried again.

resetPrepared(preparedId)
Reset prepared data so that they can be queried again.

Deprecated since version 0.17.0: Call reset() instead.

prepareData(selection, compressFlag=False, zipFlag=False)
Prepare data for a subsequent getData() call.

isPrepared(preparedId)
Check if data is ready.

Returns true if the data identified by the preparedId returned by a call to prepareData() is ready.

getDatafileIds(selection)
Get the list of data file id corresponding to the selection.

getPreparedDatafileIds(preparedId)
Get the list of data file id corresponding to the prepared Id.

Deprecated since version 0.17.0: Call getDatafileIds() instead.

getData(selection, compressFlag=False, zipFlag=False, outname=None, offset=0)
Stream the requested data.

getDataUrl(selection, compressFlag=False, zipFlag=False, outname=None)
Get the URL to retrieve the requested data.

getPreparedData(preparedId, outname=None, offset=0)
Get prepared data.

Get the data using the preparedId returned by a call to prepareData().

Deprecated since version 0.17.0: Call getData() instead.

getPreparedDataUrl(preparedId, outname=None)
Get the URL to retrieve prepared data.

Get the URL to retrieve data using the preparedId returned by a call to prepareData().

Deprecated since version 0.17.0: Call getDataUrl() instead.

getLink(datafileId, username=None)
Return a hard link to a data file.

1.2. Module reference 63



python-icat Documentation, Release 0.20.1

This is only useful in those cases where the user has direct access to the file system where the IDS is
storing data. The caller is only granted read access to the file.

put(inputStream, name, datasetId, datafileFormatId, description=None, doi=None, datafileCreate-
Time=None, datafileModTime=None)
Put data into IDS.

Put the data in the inputStream into a data file and catalogue it. The client generates a checksum which
is compared to that produced by the server to detect any transmission errors.

delete(selection)
Delete data.

icat.query — Provide the Query class

class icat.query.Query(client, entity, attributes=None, aggregate=None, order=None, con-
ditions=None, includes=None, limit=None, join_specs=None, at-
tribute=None)

Bases: object

Build a query to search an ICAT server.

The query uses the JPQL inspired syntax introduced with ICAT 4.3.0. It won’t work with older ICAT
servers.

Parameters

• client (icat.client.Client) – the ICAT client.

• entity – the type of objects to search for. This may either be an icat.entity.
Entity subclass or the name of an entity type.

• attributes – the attributes that the query shall return. See the setAttributes()
method for details.

• aggregate – the aggregate function to be applied in the SELECT clause, if any. See
the setAggregate() method for details.

• order – the sorting attributes to build the ORDER BY clause from. See the
setOrder() method for details.

• conditions – the conditions to build the WHERE clause from. See the
addConditions() method for details.

• includes – list of related objects to add to the INCLUDE clause. See the
addIncludes() method for details.

• limit – a tuple (skip, count) to be used in the LIMIT clause. See the setLimit()
method for details.

• join_specs – a mapping to override the join specification for selected related ob-
jects. See the setJoinSpecs() method for details.

• attribute – alias for attributes, retained for compatibility. Deprecated, use at-
tributes instead.

Raises

• TypeError – if entity is not a valid entity type, if both attributes and attribute are
provided, or if any of the keyword arguments have an invalid type, see the corresponding
method for details.

• ValueError – if any of the keyword arguments is not valid, see the corresponding
method for details.

Changed in version 0.18.0: add support for queries requesting a list of attributes rather then a single one.
Consequently, the keyword argument attribute has been renamed to attributes (in the plural).

64 Chapter 1. Parts of the documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError


python-icat Documentation, Release 0.20.1

Changed in version 0.19.0: add the join_specs argument.

setAttributes(attributes)
Set the attributes that the query shall return.

Parameters attributes (str or iterable of str) – the names of the attributes. This can
either be a single name or a list of names. The result of the search will be a list with
either a single attribute value or a list of attribute values respectively for each matching
entity object. If attributes is None, the result will be the list of matching objects instead.

Raises ValueError – if any name in attributes is not valid or if multiple attributes are
provided, but the ICAT server does not support this.

Changed in version 0.18.0: also accept a list of attribute names. Renamed from setAttribute()
to setAttributes() (in the plural).

setAggregate(function)
Set the aggregate function to be applied to the result.

Note that the Query class does not verify whether the aggregate function makes any sense for the
selected result. E.g. the SUM of entity objects or the AVG of strings will certainly not work in an
ICAT search expression, but it is not within the scope of the Query class to reject such nonsense
beforehand. Furthermore, “DISTINCT” requires icat.server 4.7.0 or newer to work. Again, this is not
checked by the Query class.

Parameters function (str) – the aggregate function to be applied in the SELECT
clause, if any. Valid values are “DISTINCT”, “COUNT”, “MIN”, “MAX”, “AVG”,
“SUM”, or None. “:DISTINCT”, may be appended to “COUNT”, “AVG”, and “SUM”
to combine the respective function with “DISTINCT”.

Raises ValueError – if function is not valid.

setJoinSpecs(join_specs)
Override the join specifications.

Parameters join_specs (dict) – a mapping of related object names to join specifica-
tions. Allowed values are “JOIN”, “INNER JOIN”, “LEFT JOIN”, and “LEFT OUTER
JOIN”. Any entry in this mapping overrides how this particular related object is to be
joined. The default for any relation not included in the mapping is “JOIN”. A special
value of None for join_specs is equivalent to the empty mapping.

Raises

• TypeError – if join_specs is not a mapping.

• ValueError – if any key in join_specs is not a name of a related object or if any
value is not in the allowed set.

New in version 0.19.0.

setOrder(order)
Set the order to build the ORDER BY clause from.

Parameters order (iterable or bool) – the list of the attributes used for sorting. A special
value of True may be used to indicate the natural order of the entity type. Any false
value means no ORDER BY clause. The attribute name can be wrapped with a JPQL
function (such as “LENGTH(title)”). Rather then only an attribute name, any item in the
list may also be a tuple of an attribute name and an order direction, the latter being either
“ASC” or “DESC” for ascending or descending order respectively.

Raises ValueError – if any attribute in order is not valid or if any attribute appears more
than once in the resulting ORDER BY clause.

Changed in version 0.19.0: allow one to many relationships in order. Emit a
QueryOneToManyOrderWarning rather then raising a ValueError in this case.

Changed in version 0.20.0: allow a JPQL function in the attribute.

1.2. Module reference 65

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError


python-icat Documentation, Release 0.20.1

addConditions(conditions)
Add conditions to the constraints to build the WHERE clause from.

Parameters conditions (dict) – the conditions to restrict the search result. This must
be a mapping of attribute names to conditions on that attribute. The latter may either
be a string with a single condition or a list of strings to add more then one condition on
a single attribute. The attribute name (the key of the condition) can be wrapped with a
JPQL function (such as “UPPER(title)”). If the query already has a condition on a given
attribute, the previous condition(s) will be retained and the new condition(s) added to
that.

Raises ValueError – if any key in conditions is not valid.

Changed in version 0.20.0: allow a JPQL function in the attribute.

addIncludes(includes)
Add related objects to build the INCLUDE clause from.

Parameters includes (iterable of str) – list of related objects to add to the INCLUDE
clause. A special value of “1” may be used to set (the equivalent of) an “INCLUDE 1”
clause.

Raises ValueError – if any item in includes is not a related object.

setLimit(limit)
Set the limits to build the LIMIT clause from.

Parameters limit (tuple) – a tuple (skip, count).

Raises TypeError – if limit is not a tuple of two elements.

copy()
Return an independent clone of this query.

setAttribute(attribute)
Alias for setAttributes().

Deprecated since version 0.18.0: use setAttributes() instead.

1.2.2 Special purpose modules

These modules will generally be used in particular cases only.

icat.eval — Evaluate expression in the context of an ICAT session

Evaluate a Python expression in the context of an ICAT session.

This module is intended to be run using the “-m” command line switch to Python. It adds an “-e” command line
switch and evaluates the Python expression given as argument to it after having started an ICAT session. This
allows one to run simple programs as one liners directly from the command line, as in:

# get all Dataset ids
$ python -m icat.eval -e 'client.search("Dataset.id")' -s root
[102284, 102288, 102289, 102293]

icat.dumpfile — Backend for icatdump and icatingest

This module provides the base classes icat.dumpfile.DumpFileReader and icat.dumpfile.
DumpFileWriter that define the API and the logic for reading and writing ICAT data files. The actual work is
done in file format specific modules that should provide subclasses that must implement the abstract methods.

66 Chapter 1. Parts of the documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#TypeError


python-icat Documentation, Release 0.20.1

class icat.dumpfile.DumpFileReader(client, infile)
Bases: object

Base class for backends that read a data file.

mode = 'r'
File mode suitable for the backend.

Subclasses should override this with either “rt” or “rb”, according to the mode required for the back-
end.

getdata()
Iterate over the chunks in the data file.

Yield some data object in each iteration. This data object is specific to the implementing backend and
should be passed as the data argument to getobjs_from_data().

getobjs_from_data(data, objindex)
Iterate over the objects in a data chunk.

Yield a new entity object in each iteration. The object is initialized from the data, but not yet created
at the client.

getobjs(objindex=None)
Iterate over the objects in the data file.

Yield a new entity object in each iteration. The object is initialized from the data, but not yet created
at the client.

Parameters objindex (dict) – a mapping from keys to entity objects, see icat.
client.Client.searchUniqueKey() for details. This serves as a cache of pre-
viously retrieved objects, used to resolve object relations. If this is None, an internal
cache will be used that is purged at the start of every new data chunk.

class icat.dumpfile.DumpFileWriter(client, outfile)
Bases: object

Base class for backends that write a data file.

mode = 'w'
File mode suitable for the backend.

Subclasses should override this with either “wt” or “wb”, according to the mode required for the
backend.

head()
Write a header with some meta information to the data file.

startdata()
Start a new data chunk.

If the current chunk contains any data, write it to the data file.

writeobj(key, obj, keyindex)
Add an entity object to the current data chunk.

finalize()
Finalize the data file.

writeobjs(objs, keyindex, chunksize=100)
Write some entity objects to the current data chunk.

The objects are searched from the ICAT server. The key index is used to serialize object relations
in the data file. For object types that do not have an appropriate uniqueness constraint in the ICAT
schema, a generic key is generated. These objects may only be referenced from the same chunk in the
data file.

Parameters

1.2. Module reference 67

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object


python-icat Documentation, Release 0.20.1

• objs (icat.query.Query or str or list) – query to search the objects, either
a Query object or a string. It must contain an appropriate include clause to include all
related objects from many-to-one relations. These related objects must also include
all informations needed to generate their unique key, unless they are registered in the
key index already.

Furthermore, related objects from one-to-many relations may be included. These ob-
jects will then be embedded with the relating object in the data file. The same require-
ments for including their respective related objects apply.

As an alternative to a query, objs may also be a list of entity objects. The same condi-
tions on the inclusion of related objects apply.

• keyindex (dict) – cache of generated keys. It maps object ids to unique keys. See
the icat.entity.Entity.getUniqueKey() for details.

• chunksize (int) – tuning parameter, see icat.client.Client.
searchChunked() for details.

writedata(objs, keyindex=None, chunksize=100)
Write a data chunk.

Parameters

• objs – an iterable that yields either queries to search for the objects or object lists.
See icat.dumpfile.DumpFileWriter.writeobjs() for details.

• keyindex (dict) – cache of generated keys, see icat.dumpfile.
DumpFileWriter.writeobjs() for details. If this is None, an internal index
will be used.

• chunksize (int) – tuning parameter, see icat.client.Client.
searchChunked() for details.

icat.dumpfile.Backends = {}
A register of all known backends.

icat.dumpfile.register_backend(formatname, reader, writer)
Register a backend.

This function should be called by file format specific backends at initialization.

Parameters

• formatname (str) – name of the file format that the backend implements.

• reader – class for reading data files. Should be a subclass of icat.dumpfile.
DumpFileReader.

• writer – class for writing data files. Should be a subclass of icat.dumpfile.
DumpFileWriter.

icat.dumpfile.open_dumpfile(client, f, formatname, mode)
Open a data file, either for reading or for writing.

Note that depending on the backend, the file must either be opened in binary or in text mode. If f is a file
object, it must have been opened in the appropriate mode according to the backend selected by formatname.
The backend classes define a corresponding class attribute mode. If f is a file name, the file will be opened
in the appropriate mode.

The subclasses of icat.dumpfile.DumpFileReader and icat.dumpfile.DumpFileWriter
may be used as context managers. This function is suitable to be used in the with statement.

>>> with open_dumpfile(client, f, "XML", 'r') as dumpfile:
... for obj in dumpfile.getobjs():
... obj.create()

Parameters

68 Chapter 1. Parts of the documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


python-icat Documentation, Release 0.20.1

• client (icat.client.Client) – the ICAT client.

• f – the object to read the data from or write the data to, according to mode. What object
types are supported depends on the backend. All backends support at least a file object
or the name of file. The special value of “-” may be used as an alias for sys.stdin
or sys.stdout.

• formatname (str) – name of the file format that has been registered by the backend.

• mode (str) – either “r” or “w” to indicate that the file should be opened for reading or
writing respectively.

Returns an instance of the appropriate class. This is either the reader or the writer class, accord-
ing to the mode, that has been registered by the backend.

Raises ValueError – if the format is not known or if the mode is not “r” or “w”.

ICAT data files

Data files are partitioned in chunks. This is done to avoid having the whole file, e.g. the complete inventory
of the ICAT, at once in memory. The problem is that objects contain references to other objects (e.g. Datafiles
refer to Datasets, the latter refer to Investigations, and so forth). We keep an index of the objects in order to
resolve these references. But there is a memory versus time tradeoff: we cannot keep all the objects in the
index, that would again mean the complete inventory of the ICAT. And we can’t know beforehand which object
is going to be referenced later on, so we don’t know which one to keep and which one to discard from the index.
Fortunately we can query objects we discarded once back from the ICAT server with icat.client.Client.
searchUniqueKey(). But this is expensive. So the strategy is as follows: keep all objects from the current
chunk in the index and discard the complete index each time a chunk has been processed. This will work fine
if objects are mostly referencing other objects from the same chunk and only a few references go across chunk
boundaries.

Therefore, we want these chunks to be small enough to fit into memory, but at the same time large enough to keep
as many relations between objects as possible local in a chunk. It is in the responsibility of the writer of the data
file to create the chunks in this manner.

The objects that get written to the data file and how this file is organized is controlled by lists of ICAT search
expressions, see icat.dumpfile.DumpFileWriter.writeobjs(). There is some degree of flexibility:
an object may include related objects in an one-to-many relation, just by including them in the search expression.
In this case, these related objects should not have a search expression on their own again. For instance, the search
expression for Grouping may include UserGroup. The UserGroups will then be embedded in their respective
grouping in the data file. There should not be a search expression for UserGroup then.

Objects related in a many-to-one relation must always be included in the search expression. This is also true if the
object is indirectly related to one of the included objects. In this case, only a reference to the related object will be
included in the data file. The related object must have its own list entry.

1.2.3 Internal modules

These modules are used internally by python-icat, but most users will not need to care about them.

icat.authinfo — Provide the AuthenticatorInfo class

Note: This module is used internally in icat.config. Most users will not need to use it directly or even care
about it.

class icat.authinfo.AuthenticatorInfo(authInfo)
Bases: collections.abc.Sequence

A wrapper around the authenticator info as returned by the ICAT server.

1.2. Module reference 69

https://docs.python.org/3/library/sys.html#sys.stdin
https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence


python-icat Documentation, Release 0.20.1

Parameters authInfo (list) – authenticator information from the ICAT server as returned
by icat.client.Client.getAuthenticatorInfo().

getAuthNames()
Return a list of authenticator names available at the ICAT server.

getCredentialKeys(auth=None, hide=None)
Return credential keys.

Parameters

• auth (str) – authenticator name. If given, return only the credential keys for this
authenticator. If None, return credential keys for all authenticators.

• hide (bool) – if given, return either only the hidden or the non-hidden credential
keys, according to the provided value. If None, return credential keys for all authen-
ticators.

Returns names of credential keys.

Return type set of str

Raises KeyError – if auth is provided, but no authenticator by that name is defined in the
authenticator information.

Changed in version 0.17.0: add default value for parameter auth.

class icat.authinfo.LegacyAuthenticatorInfo
Bases: object

AuthenticatorInfo for old ICAT server.

This is a dummy implementation to emulate AuthenticatorInfo for the case that the server does not support
the icat.client.Client.getAuthenticatorInfo() call.

getAuthNames()
Return None.

getCredentialKeys(auth=None, hide=None)
Return credential keys.

Dummy implementation, pretent that all authenticators expect username and password as credential
keys, where password is marked as hidden.

Parameters

• auth (str) – authenticator name. This parameter is ignored.

• hide (bool) – if given, return either only the hidden or the non-hidden credential
keys, according to the provided value. If None, return credential keys for all authen-
ticators.

Returns names of credential keys.

Return type set of str

Changed in version 0.17.0: add default value for parameter auth.

icat.dumpfile_xml — XML data file backend

This module provides the XML backend for icat.dumpfile. See the documentation of that module on how
to read and write ICAT data files.

class icat.dumpfile_xml.XMLDumpFileReader(client, infile)
Bases: icat.dumpfile.DumpFileReader

Backend for reading ICAT data from a XML file.

70 Chapter 1. Parts of the documentation

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str


python-icat Documentation, Release 0.20.1

This backend accepts a file object, a filename, or a XML tree object (lxml.etree._ElementTree) as
input. Note that the latter case requires by definition the complete input to be at once in memory. This is
only useful if the input is small enough.

mode = 'rb'
File mode suitable for this backend.

getdata_file()
Iterate over the chunks in the data file.

getdata_etree()
Iterate over the chunks from a XML tree object.

getobjs_from_data(data, objindex)
Iterate over the objects in a data chunk.

Yield a new entity object in each iteration. The object is initialized from the data, but not yet created
at the client.

class icat.dumpfile_xml.XMLDumpFileWriter(client, outfile)
Bases: icat.dumpfile.DumpFileWriter

Backend for writing ICAT data to a XML file.

mode = 'wb'
File mode suitable for this backend.

head()
Write a header with some meta information to the data file.

startdata()
Start a new data chunk.

If the current chunk contains any data, write it to the data file.

writeobj(key, obj, keyindex)
Add an entity object to the current data chunk.

finalize()
Finalize the data file.

icat.dumpfile_yaml — YAML data file backend

This module provides the YAML backend for icat.dumpfile. See the documentation of that module on how
to read and write ICAT data files.

class icat.dumpfile_yaml.YAMLDumpFileReader(client, infile)
Bases: icat.dumpfile.DumpFileReader

Backend for reading ICAT data from a YAML file.

mode = 'rt'
File mode suitable for this backend.

getdata()
Iterate over the chunks in the data file.

getobjs_from_data(data, objindex)
Iterate over the objects in a data chunk.

Yield a new entity object in each iteration. The object is initialized from the data, but not yet created
at the client.

class icat.dumpfile_yaml.YAMLDumpFileWriter(client, outfile)
Bases: icat.dumpfile.DumpFileWriter

Backend for writing ICAT data to a YAML file.

1.2. Module reference 71



python-icat Documentation, Release 0.20.1

mode = 'wt'
File mode suitable for this backend.

head()
Write a header with some meta information to the data file.

startdata()
Start a new data chunk.

If the current chunk contains any data, write it to the data file.

writeobj(key, obj, keyindex)
Add an entity object to the current data chunk.

finalize()
Finalize the data file.

icat.dump_queries — Queries needed to dump the ICAT content

Note: This module is mostly intended as a helper for the icatdump script. Most users will not need to use it
directly or even care about it.

The icatdump data is written in chunks, see the documentation of icat.dumpfile for details why this is
needed. The partition used here is the following:

1. One chunk with all objects that define authorization (User, Group, Rule, PublicStep).

2. All static content in one chunk, e.g. all objects not related to individual investigations and that need to be
present, before we can add investigations.

3. The investigation data. All content related to individual investigations. Each investigation with all its data
in one single chunk on its own.

4. One last chunk with all remaining stuff (RelatedDatafile, DataCollection, Job).

The functions defined in this module each return a list of queries needed to fetch all objects to be included in one
of these chunkes.

icat.dump_queries.getAuthQueries(client)
Return the queries to fetch all objects related to authorization.

icat.dump_queries.getStaticQueries(client)
Return the queries to fetch all static objects.

icat.dump_queries.getInvestigationQueries(client, invid)
Return the queries to fetch all objects related to an investigation.

icat.dump_queries.getOtherQueries(client)
Return the queries to fetch all other objects, e.g. not static and not directly related to an investigation.

icat.helper — A collection of internal helper routines

Note: This module is intended for the internal use in python-icat. Most users will not need to use it directly or
even care about it.

icat.helper.simpleqp_quote(obj)
Simple quote in quoted-printable style.

icat.helper.simpleqp_unquote(qs)
Simple unquote from quoted-printable style.

72 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

icat.helper.parse_attr_val(avs)
Parse an attribute value list string.

Parse a string representing a list of attribute and value pairs in the form:

attrvaluestring ::= attrvalue
| attrvalue '_' attrvaluestring

attrvalue ::= attr '-' value
value ::= simplevalue

| '(' attrvaluestring ')'
attr ::= [A-Za-z]+
simplevalue ::= [0-9A-Za-z=]+

Return a dict with the attributes as keys. In the case of an attrvaluestring in parenthesis, this string is set as
value in the dict without any further processing.

icat.helper.parse_attr_string(s, attrtype)
Parse the string representation of an entity attribute.

Note: for Date we use the parser from suds.sax.date. If this is the original Suds version, this parser is
buggy and might yield wrong results. But the same buggy parser is also applied by Suds internally for the
Date values coming from the ICAT server. Since we are mainly interested to compare with values from the
ICAT server, we have a fair chance that this comparision nevertheless yields valid results.

icat.helper.ms_timestamp(dt)
Convert datetime.datetime or string to timestamp in milliseconds since epoch.

icat.listproxy — Provide the ListProxy class

Note: This module is mostly intended for the internal use in python-icat. Most users will not need to use it
directly or even care about it.

class icat.listproxy.ListProxy(target)
Bases: collections.abc.MutableSequence

A list that acts as a proxy to another list.

ListProxy mirrors a target list: all items are stored in the target and fetched back from the target on request.
In all other aspects, ListProxy tries to mimic as close as possible the behavior of an ordinary list.

This class tries to be a minimal working implementation. Methods like append() and extent()
have deliberately not been implemented here. These operations fall back on the versions inherited from
collections.MutableSequence that are based on the elementary methods. This may be less effi-
cient then proxying the operations directly to the target, but this way its easier to override the elementary
methods.

>>> l = [ 0, 1, 2, 3, 4 ]
>>> lp = ListProxy(l)
>>> lp
[0, 1, 2, 3, 4]
>>> lp[2]
2
>>> lp[2:4]
[2, 3]
>>> lp == l
True
>>> lp < l
False
>>> l < lp
False
>>> lp < [0, 1, 2, 3, 4, 0]

(continues on next page)

1.2. Module reference 73

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableSequence


python-icat Documentation, Release 0.20.1

(continued from previous page)

True
>>> [0, 1, 2, 3, 3] > lp
False
>>> lp[2:4] = ["two", "three"]
>>> lp
[0, 1, 'two', 'three', 4]
>>> l
[0, 1, 'two', 'three', 4]
>>> lp *= 2
>>> l
[0, 1, 'two', 'three', 4, 0, 1, 'two', 'three', 4]
>>> del lp[5:]
>>> l
[0, 1, 'two', 'three', 4]
>>> lp += ['...', 'and', 'so', 'on']
>>> l
[0, 1, 'two', 'three', 4, '...', 'and', 'so', 'on']
>>> l[0:] = [ 1, 'b', 'iii' ]
>>> ll = [ 'x', 'y' ]
>>> lp + ll
[1, 'b', 'iii', 'x', 'y']
>>> ll + lp
['x', 'y', 1, 'b', 'iii']
>>> lp * 3
[1, 'b', 'iii', 1, 'b', 'iii', 1, 'b', 'iii']

insert(index, value)
S.insert(index, value) – insert value before index

icat.sslcontext — Helper functions and classes related to SSL contexts

Note: This module is mostly intended for the internal use in python-icat. Most users will not need to use it
directly or even care about it.

icat.sslcontext.create_ssl_context(verify=True, cafile=None, capath=None)
Set up the SSL context.

class icat.sslcontext.HTTPSTransport(context, **kwargs)
Bases: suds.transport.http.HttpTransport

A modified HttpTransport using an explicit SSL context.

u2handlers()
Get a collection of urllib handlers.

1.2.4 Obsolete modules

These modules are deprecated and will be removed from future version of python-icat.

icat.cgi — Common Gateway Interface support

This module provides tools for writing CGI scripts acting as ICAT clients.

Deprecated since version 0.13: This module is deprecated and will be removed in version 1.0.

class icat.cgi.SessionCookie
Bases: http.cookies.SimpleCookie

74 Chapter 1. Parts of the documentation

https://docs.python.org/3/library/http.cookies.html#http.cookies.SimpleCookie


python-icat Documentation, Release 0.20.1

A cookie to store an ICAT session id.

Extend the parent class by the attribute sessionId. Setting this attribute will set the session id in the cookie,
getting it will retrieve its value from the cookie.

class icat.cgi.Session(url, cookieName=’ICATSESSIONID’, cookiePath=’/’, secure=True)
Bases: object

A persisting ICAT session.

Manage an ICAT session that persist over the life time of the script. The session id is stored in a icat.
cgi.SessionCookie.

isActive()
Check whether there is an active session.

login(auth, username, password)
Log in with username and password and start a session.

logout()
Log out and terminate the session.

icat.icatcheck — Check compatibility with the ICAT server

Note: This module provides tests to check the compatibility of the client with the WSDL description got from
the ICAT server. It is mainly useful for the package maintainer.

Deprecated since version 0.17: This module is deprecated and will be removed in version 1.0.

class icat.icatcheck.ICATChecker(client)
Bases: object

Provide checks for the ICAT schema from a given server.

Check that the entities defined in the ICAT client are in sync with the WSDL schema got from the ICAT
server.

gettypes()
Return a list of the types defined in the WSDL.

getentities()
Search for entities defined at the server.

Return a dict with type names as keys and EntityInfo objects as values.

check()
Check consistency of the ICAT client with the server schema.

Report any abnormalities as warnings to the logger. Returns the number of warnings emitted.

checkExceptions()
Check consistency of exceptions.

Check that all icatExceptionTypes defined in the WSDL have a corresponding exception class defined
in icat.exception. Report missing exceptions as a warning to the logger. Return the number of warnings
emitted.

pythonsrc(genealogyrules=None, baseclassname=’Entity’)
Generate Python source code matching the ICAT schema.

Generate source code for a set of classes that match the entity info found at the server. The source
code is returned as a string.

The Python classes are created as a hierarchy. It is assumed that there is one abstract base type which
is the root of the genealogy tree. In the case of the ICAT 4.2.* schema, this assumptions holds, the
base is suds.sudsobject.entityBaseBean.

1.2. Module reference 75

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object


python-icat Documentation, Release 0.20.1

Entity classes having children in the hierarchy are assumed to be abstract. In this case the attribut
icat.entity.Entity.BeanName is set to None.

Parameters

• genealogyrules (list of tuple) – define the rules for the genealogy tree. It
must be a list of tuples, each having two elements, a regular expression and the name
of a parent type. Each type matching the regular expression is assumed to be derived
from the parent. The first match in the list wins. The last element in the list should be
a default rule of the form (r'','base'), where base is the name of the root.

• baseclassname (str) – the name for the base class at the root of the genealogy
tree that shall be used in the Python output.

Returns Python source.

Return type str

Raises GenealogyError – if the genealogy tree defined by genealogyrules is not con-
sistent.

1.3 Command line scripts

This section provides a reference for the command line scripts that are alongside with python-icat.

1.3.1 icatdump

Synopsis

icatdump [standard options] [-o FILE] [-f FORMAT]

Description

This script queries the content from an ICAT server and serializes into a flat file. The format of that file depends
on the backend that can be selected with the --format option.

Options

The configuration options may be set in the command line or in a configuration file. Some options may also be set
in the environment.

Specific Options

The following options are specific to icatdump:

-o FILE, --outputfile FILE
Set the output file name. If the value - is used, the output will be written to standard output. This is also the
default.

-f FORMAT, --format FORMAT
Select the backend to use and thus the output file format. XML and YAML backends are available.

76 Chapter 1. Parts of the documentation

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


python-icat Documentation, Release 0.20.1

Standard Options

The following options needed to connect the ICAT service are common for most python-icat scripts:

-h, --help
Display a help message and exit.

-c CONFIGFILE, --configfile CONFIGFILE
Name of a configuration file.

-s SECTION, --configsection SECTION
Name of a section in the configuration file. If set, the values in this configuration section will be applied to
define other options.

-w URL, --url URL
URL of the ICAT server. This should point to the web service descriptions. If the URL has no path
component, a default path will be added.

--no-check-certificate
Do not verify the ICAT server’s TLS certificate. This is only relevant if the URL set with --url uses
HTTPS. It is mostly only useful for connecting a test server that does not have a trusted certificate.

--http-proxy HTTP_PROXY
Proxy to use for http requests.

--https-proxy HTTPS_PROXY
Proxy to use for https requests.

--no-proxy NO_PROXY
Comma separated list of exclusions for proxy use.

-a AUTH, --auth AUTH
Name of the authentication plugin to use for login to the ICAT server.

-u USERNAME, --user USERNAME
The ICAT user name.

-p PASSWORD, --pass PASSWORD
The user’s password. Will prompt for the password if not set.

-P, --prompt-pass
Prompt for the password. This is mostly useful to override a password set in the configuration file.

Known Issues and Limitations

• IDS is not supported: the script only dumps the meta data stored in the ICAT, not the content of the files
stored in the IDS.

• The script will only writes objects that the user connecting ICAT has read permissions for. The script may
need to connect as the ICAT root user in order to get the full content.

• The following items are deliberately not included in the output:

– Log objects (ICAT server versions older then 4.7.0),

– The attributes id, createId, createTime, modId, and modTime of any object.

• It is assumed that for each Dataset ds in the ICAT where ds.sample is not NULL, the condition
ds.investigation = ds.sample.investigation holds. If this is not satisfied, this script will fail with a
DataConsistencyError.

• The partition of the data into chunks is static. It should rather be dynamic, e.g. chunks should be splitted if
the number of objects in them grows too large.

• The content in the ICAT server must not be modified while this script is retrieving it. Otherwise the script
may fail or the dumpfile be inconsistent.

1.3. Command line scripts 77



python-icat Documentation, Release 0.20.1

• The script fails if the data contains any Study if the ICAT server version is older then 4.6.0. This is a bug in
icat.server.

Environment Variables

ICAT_CFG
Name of a configuration file, see --configfile.

ICAT_CFG_SECTION
Name of a section in the configuration file, see --configsection.

ICAT_SERVICE
URL of the ICAT server, see --url.

http_proxy
Proxy to use for http requests, see --http-proxy .

https_proxy
Proxy to use for https requests, see --https-proxy .

no_proxy
Exclusions for proxy use, see --no-proxy .

ICAT_AUTH
Name of the authentication plugin, see --auth.

ICAT_USER
ICAT user name, see --user.

See also

• Section ICAT data files on the structure of the dump files.

• Section Predefined configuration variables on the standard options.

• The icatingest script.

1.3.2 icatingest

Synopsis

icatingest [standard options] [-i FILE] [-f FORMAT] [–upload-datafiles] [–datafile-dir DATADIR] [–duplicate
OPTION]

Description

This script reads an ICAT data file and creates all objects found in an ICAT server. The format of that file depends
on the backend that can be selected with the --format option.

Options

The configuration options may be set in the command line or in a configuration file. Some options may also be set
in the environment.

78 Chapter 1. Parts of the documentation

https://github.com/icatproject/icat.server/issues/155
https://github.com/icatproject/icat.server/issues/155


python-icat Documentation, Release 0.20.1

Specific Options

The following options are specific to icatingest:

-i FILE, --inputfile FILE
Set the input file name. If the value - is used, the input will be read from standard input. This is also the
default.

-f FORMAT, --format FORMAT
Select the backend to use and thus the input file format. XML and YAML backends are available.

--upload-datafiles
If that flag is set, Datafile objects will not be created in the ICAT server directly, but a corresponding file
will be uploaded to IDS instead.

--datafile-dir DATADIR
Directory to search for the files to be uploaded to IDS. This is only relevant if --upload-datafiles is
set. The default is the current working directory.

--duplicate OPTION
Set the behavior in the case that any object read from the input already exists in the ICAT server. Valid
options are:

THROW Throw an error. This is the default.

IGNORE Skip the object read from the input.

CHECK Compare all attributes from the input object with the already existing object in ICAT. Throw an
error of any attribute differs.

OVERWRITE Overwrite the existing object in ICAT, e.g. update it with all attributes set to the values
found in the input object.

If --upload-datafiles is set, this option will be ignored for Datafile objects which will then always
raise an error if they already exist.

Standard Options

The following options needed to connect the ICAT service are common for most python-icat scripts:

-h, --help
Display a help message and exit.

-c CONFIGFILE, --configfile CONFIGFILE
Name of a configuration file.

-s SECTION, --configsection SECTION
Name of a section in the configuration file. If set, the values in this configuration section will be applied to
define other options.

-w URL, --url URL
URL of the ICAT server. This should point to the web service descriptions. If the URL has no path
component, a default path will be added.

--idsurl URL
URL of the IDS server. This is only relevant if --upload-datafiles is set. If the URL has no path
component, a default path will be added.

--no-check-certificate
Do not verify the ICAT server’s TLS certificate. This is only relevant if the URL set with --url or
--idsurl uses HTTPS. It is mostly only useful for connecting a test server that does not have a trusted
certificate.

--http-proxy HTTP_PROXY
Proxy to use for http requests.

1.3. Command line scripts 79



python-icat Documentation, Release 0.20.1

--https-proxy HTTPS_PROXY
Proxy to use for https requests.

--no-proxy NO_PROXY
Comma separated list of exclusions for proxy use.

-a AUTH, --auth AUTH
Name of the authentication plugin to use for login to the ICAT server.

-u USERNAME, --user USERNAME
The ICAT user name.

-p PASSWORD, --pass PASSWORD
The user’s password. Will prompt for the password if not set.

-P, --prompt-pass
Prompt for the password. This is mostly useful to override a password set in the configuration file.

Known Issues and Limitations

• The user running this script need to have create permission for all objects in the dump file. In the generic
case of restoring the entire content on an empty ICAT server, the script must be run by the ICAT root user.

• A dump and restore of an ICAT will not preserve the attributes id, createId, createTime, modId,
and modTime of any object. As a consequence, access rules that are based on the values of these attributes
will not work after a restore.

• Dealing with duplicates, see --duplicate, is only supported for single objects. If the object contains
embedded related objects in one to many relationships that are to be created at once, the only allowed option
to deal with duplicates is THROW.

Environment Variables

ICAT_CFG
Name of a configuration file, see --configfile.

ICAT_CFG_SECTION
Name of a section in the configuration file, see --configsection.

ICAT_SERVICE
URL of the ICAT server, see --url.

ICAT_DATA_SERVICE
URL of the IDS server, see --idsurl.

http_proxy
Proxy to use for http requests, see --http-proxy .

https_proxy
Proxy to use for https requests, see --https-proxy .

no_proxy
Exclusions for proxy use, see --no-proxy .

ICAT_AUTH
Name of the authentication plugin, see --auth.

ICAT_USER
ICAT user name, see --user.

See also

• Section ICAT data files on the structure of the dump files.

80 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

• Section Predefined configuration variables on the standard options.

• The icatdump script.

1.3.3 wipeicat

Synopsis

wipeicat [options]

Description

Delete all content from an ICAT server.

In order to avoid leaving orphan content in the IDS server behind, the script first tries to delete all Datafiles having
the location attribute set from the IDS server. If deleting the Datafiles succeeded, the remaing content is
deleted from ICAT in palatable chunks.

Options

The configuration options may be set in the command line or in a configuration file. Some options may also be set
in the environment.

These options are needed to connect the ICAT service and are common for most python-icat scripts.

-h, --help
Display a help message and exit.

-c CONFIGFILE, --configfile CONFIGFILE
Name of a configuration file.

-s SECTION, --configsection SECTION
Name of a section in the configuration file. If set, the values in this configuration section will be applied to
define other options.

-w URL, --url URL
URL of the ICAT server. This should point to the web service descriptions. If the URL has no path
component, a default path will be added.

--no-check-certificate
Do not verify the ICAT server’s TLS certificate. This is only relevant if the URL set with --url uses
HTTPS. It is mostly only useful for connecting a test server that does not have a trusted certificate.

--http-proxy HTTP_PROXY
Proxy to use for http requests.

--https-proxy HTTPS_PROXY
Proxy to use for https requests.

--no-proxy NO_PROXY
Comma separated list of exclusions for proxy use.

-a AUTH, --auth AUTH
Name of the authentication plugin to use for login to the ICAT server.

-u USERNAME, --user USERNAME
The ICAT user name.

-p PASSWORD, --pass PASSWORD
The user’s password. Will prompt for the password if not set.

-P, --prompt-pass
Prompt for the password. This is mostly useful to override a password set in the configuration file.

1.3. Command line scripts 81



python-icat Documentation, Release 0.20.1

Known Issues with old IDS Versions

The recommended version of the IDS server is 1.6.0 or newer. The script does not take any particular measure
to work around issues in servers older than that. In particular, the script mail fail or leave rubbish behind in the
following situations:

• The IDS server is older then 1.6.0 and there is any Dataset with many Datafiles, see IDS Issue #42.

• The IDS server is older then 1.3.0 and restoring of any Dataset takes a significant amount of time, see IDS
Issue #14.

The script does however take care not trying to delete any Datafile having a NULL location attribute in order
to work around IDS Issue #63 in IDS server older then 1.9.0.

Environment Variables

ICAT_CFG
Name of a configuration file, see --configfile.

ICAT_CFG_SECTION
Name of a section in the configuration file, see --configsection.

ICAT_SERVICE
URL of the ICAT server, see --url.

http_proxy
Proxy to use for http requests, see --http-proxy .

https_proxy
Proxy to use for https requests, see --https-proxy .

no_proxy
Exclusions for proxy use, see --no-proxy .

ICAT_AUTH
Name of the authentication plugin, see --auth.

ICAT_USER
ICAT user name, see --user.

1.4 Changelog

1.4.1 0.20.1 (2021-11-04)

Bug fixes and minor changes

• #96: Fix failing build of the documentation at Read the Docs.

1.4.2 0.20.0 (2021-10-29)

New features

• #86, #89: allow SQL functions to be used on the attributes in the arguments to icat.query.Query.
setOrder() and icat.query.Query.addConditions().

82 Chapter 1. Parts of the documentation

https://github.com/icatproject/ids.server/issues/42
https://github.com/icatproject/ids.server/issues/14
https://github.com/icatproject/ids.server/issues/14
https://github.com/icatproject/ids.server/issues/63
https://github.com/icatproject/python-icat/pull/96
https://github.com/icatproject/python-icat/issues/86
https://github.com/icatproject/python-icat/pull/89


python-icat Documentation, Release 0.20.1

Incompatible changes and new bugs

• #94: the implementation of #89 changed the internal data structures in icat.query.Query.
conditions and icat.query.Query.order. These attributes are considered internal and are de-
liberately not documented, so one could argue that this is not an incompatible change. But the changes also
have an impact on the return value of icat.query.Query.__repr__() such that it is not suitable to
recreate the query object.

Bug fixes and minor changes

• #90, #91, #95: icat.query.Query.join_specs was not taken into account in icat.query.
Query.copy() and icat.query.Query.__repr__().

1.4.3 0.19.0 (2021-07-20)

New features

• #85: add an argument join_specs to the constructor of class icat.query.Query and a corresponding
method icat.query.Query.setJoinSpecs() to override the join specification to be used in the
created query for selected related objects.

Bug fixes and minor changes

• #83, #84: enable ordering on one to many relationships in class icat.query.Query .

• #84: Add warning classes icat.exception.QueryOneToManyOrderWarning and icat.
exception.QueryWarning, the latter being a common base class for warnings emitted during creation
of a query.

1.4.4 0.18.1 (2021-04-13)

Bug fixes and minor changes

• #82: Change the search result in the case of multiple fields from list to tuple.

• #76, #81: work around an issue in icat.server using DISTINCT in search queries for multiple fields.

1.4.5 0.18.0 (2021-03-29)

New features

• #76, #78: add client side support for searching for multiple fields introduced in icat.server 4.11.0. Add
support for building the corresponding queries in the in class icat.query.Query .

Incompatible changes and deprecations

• Since icat.query.Query now also accepts a list of attribute names rather then only a single one, the
corresponding keyword argument attribute has been renamed to attributes (in the plural). Accordingly,
the method icat.query.Query.setAttribute() has been renamed to icat.query.Query.
setAttributes(). The old names are retained as aliases, but are deprecated.

1.4. Changelog 83

https://github.com/icatproject/python-icat/issues/94
https://github.com/icatproject/python-icat/pull/89
https://github.com/icatproject/python-icat/issues/90
https://github.com/icatproject/python-icat/issues/91
https://github.com/icatproject/python-icat/pull/95
https://github.com/icatproject/python-icat/pull/85
https://github.com/icatproject/python-icat/issues/83
https://github.com/icatproject/python-icat/pull/84
https://github.com/icatproject/python-icat/pull/84
https://github.com/icatproject/python-icat/pull/82
https://github.com/icatproject/python-icat/issues/76
https://github.com/icatproject/python-icat/pull/81
https://github.com/icatproject/python-icat/issues/76
https://github.com/icatproject/python-icat/pull/78


python-icat Documentation, Release 0.20.1

Bug fixes and minor changes

• #79: fix an encoding issue in icat.client.Client.apiversion, only relevant with Python 2.

• #80: add TypeError as additional ancestor of icat.exception.EntityTypeError.

1.4.6 0.17.0 (2020-04-30)

New features

• #65: Add support for the extended IDS API calls icat.ids.IDSClient.getSize() and icat.
ids.IDSClient.getStatus() accepting a preparedId as introduced in ids.server 1.11.0. Also extend
the methods icat.ids.IDSClient.reset(), icat.ids.IDSClient.getDatafileIds(),
icat.ids.IDSClient.getData(), icat.ids.IDSClient.getDataUrl(), icat.
client.Client.getData(), and icat.client.Client.getDataUrl() to accept a
preparedId in the place of a data selection.

• #63: Set a default path in the URL for ICAT and IDS respectively.

Incompatible changes and deprecations

• Drop support for ICAT 4.2.*, deprecated in 0.13.0.

• #61, #64: Review icat.entities. The entity classes from the ICAT schema are now dynamically cre-
ated based on the information gathered with the icat.client.Client.getEntityInfo() ICAT
API call. Code that relied on the internals of icat.entities such as the class hierarchy or that refer-
enced any of the entity classes directly will need to be revisited. Note that common python-icat programs
don’t need to do any of that. So it is assumed that most existing programs are not concerned.

• Deprecate icat.ids.IDSClient.resetPrepared(), icat.ids.IDSClient.
getPreparedDatafileIds(), icat.ids.IDSClient.getPreparedData(), icat.
ids.IDSClient.getPreparedDataUrl(), icat.client.Client.getPreparedData(),
and icat.client.Client.getPreparedDataUrl(). Call the corresponding methods without
Prepared in the name with the same arguments instead.

• Deprecate support for Python 2 and Python 3.3.

• Deprecate module icat.icatcheck. This module was not intended to be used in python-icat programs
anyway.

Bug fixes and minor changes

• #68: wipeicat enters an infinite loop if Datafiles are missing from IDS storage.

• #19, #69: Review documentation and add tutorial.

• #62: Minor fixes in the error handling in setup.py.

• Fix icatdata-4.10.xsd: Study.endDate was erroneously not marked as optional.

• #70: Fix several errors in the tests.

• #58: Use specific test data for different ICAT versions.

• #67, #71, #72: document the option to use suds-community instead of suds-jurko.

Misc

• Do not include the documentation in the source distribution. Rely on the online documentation (see link in
the README.rst) instead.

84 Chapter 1. Parts of the documentation

https://github.com/icatproject/python-icat/pull/79
https://github.com/icatproject/python-icat/pull/80
https://docs.python.org/3/library/exceptions.html#TypeError
https://github.com/icatproject/python-icat/pull/65
https://github.com/icatproject/python-icat/issues/63
https://github.com/icatproject/python-icat/issues/61
https://github.com/icatproject/python-icat/pull/64
https://github.com/icatproject/python-icat/issues/68
https://github.com/icatproject/python-icat/issues/19
https://github.com/icatproject/python-icat/pull/69
https://github.com/icatproject/python-icat/issues/62
https://github.com/icatproject/python-icat/pull/70
https://github.com/icatproject/python-icat/issues/58
https://github.com/icatproject/python-icat/issues/67
https://github.com/icatproject/python-icat/pull/71
https://github.com/icatproject/python-icat/issues/72


python-icat Documentation, Release 0.20.1

1.4.7 0.16.0 (2019-09-26)

New features

• #59: Add support for sub-commands in icat.config.

Incompatible changes and deprecations

• Drop support for Python 2.6.

Bug fixes and minor changes

• #60: Fix bad coding style dealing with function parameters.

• Use setuptools_scm to manage the version number.

1.4.8 0.15.1 (2019-07-12)

Bug fixes and minor changes

• Issue #56: icatdump fails to include Shift.instrument.

• Issue #57: icat.client.Client.searchChunked() still susceptible to LIMIT clause bug in
icat.server (Issue icatproject/icat.server#128).

• Call yaml.safe_load() rather then yaml.load(), fixing a deprecation warning from PyYAML 5.1.

1.4.9 0.15.0 (2019-03-27)

New features

• #53: Add support for ICAT 4.10.0 including schema changes in that version.

Incompatible changes and deprecations

• Require pytest 3.1.0 or newer to run the test suite. Note that this pytest version in turn requires Python 2.6,
2.7, or 3.3 and newer.

• Drop support for Python 3.1 and 3.2. There is no known issue with these Python versions in python-icat (so
far). But since we can’t test this any more, see above, we drop the claim to support them.

Bug fixes and minor changes

• #49: Module icat.eval is outdated.

• #50, #52: Fix DeprecationWarnings.

• #51: Fix a compatibility issue with pytest 4.1.0 in the tests.

• #54: Fix a UnicodeDecodeError in the tests.

1.4. Changelog 85

https://github.com/icatproject/python-icat/issues/59
https://github.com/icatproject/python-icat/pull/60
https://github.com/icatproject/python-icat/issues/56
https://github.com/icatproject/python-icat/issues/57
https://github.com/icatproject/icat.server/issues/128
https://github.com/icatproject/python-icat/pull/53
https://github.com/icatproject/python-icat/issues/49
https://github.com/icatproject/python-icat/issues/50
https://github.com/icatproject/python-icat/issues/52
https://github.com/icatproject/python-icat/issues/51
https://github.com/icatproject/python-icat/issues/54


python-icat Documentation, Release 0.20.1

1.4.10 0.14.2 (2018-10-25)

Bug fixes and minor changes

• Add a hook to control internal diverting of sys.err in the icat.config module. This is intentionally
not documented as it goes deeply into the internals of this module and most users will probably not need it.

1.4.11 0.14.1 (2018-06-05)

Bug fixes and minor changes

• Fix a misleading error message if the IDS server returns an error for the Write API call.

1.4.12 0.14.0 (2018-06-01)

New features

• #45: Add support for the IDS Write API call introduced in ids.server 1.9.0.

• #46, #47: Add a ìcat.client.Client.autoRefresh() method. The scripts icatdump and
icatingest call this method periodically to prevent the session from expiring.

• #48: Add support for an ordering direction qualifier in class icat.query.Query .

• #44: Add method icat.entity.Entity.as_dict().

• #40: Add method icat.client.Client.clone().

Incompatible changes and deprecations

• Deprecate function icat.exception.stripCause().

This was an internal helper function not really meant to be part of the API. The functionality has been moved
in a base class of the exception hierarchy.

Bug fixes and minor changes

• Add the icat.ids.IDSClient.version() API call introduced in ids.server 1.8.0.

• #41: Incomprehensible error messages with Python 3.

• #43: icat.client.Client.logout() should silently ignore icat.exception.
ICATSessionError.

• Minor changes in the error handling. Add new exception icat.exception.EntityTypeError.

• Documentation fixes.

1.4.13 0.13.1 (2017-07-12)

Bug fixes and minor changes

• #38: There should be a way to access the kwargs used to create the client in config.

86 Chapter 1. Parts of the documentation

https://github.com/icatproject/python-icat/pull/45
https://github.com/icatproject/python-icat/issues/46
https://github.com/icatproject/python-icat/pull/47
https://github.com/icatproject/python-icat/issues/48
https://github.com/icatproject/python-icat/pull/44
https://github.com/icatproject/python-icat/issues/40
https://github.com/icatproject/python-icat/issues/41
https://github.com/icatproject/python-icat/issues/43
https://github.com/icatproject/python-icat/issues/38


python-icat Documentation, Release 0.20.1

1.4.14 0.13.0 (2017-06-09)

New features

• #11: Support discovery of info about available ICAT authenticators.

If supported by the ICAT server (icat.server 4.9.0 and newer), the icat.config module queries the server
for information on available authenticators and the credential keys they require for login. The configuration
variables for these keys are then adapted accordingly. Note incompatible changes below.

• Review wipeicat. This was an example script, but is now promoted to be a regular utility script that gets
installed.

• #32: Add support for using aggregate functions in class icat.query.Query .

• #30: Add a predefined config variable type icat.config.cfgpath().

• #31: Add a flag to add the default variables to the icat.config.Config constructor (default: True).

• icat.dumpfile_xml.XMLDumpFileReader also accepts a XML tree object as input.

• Verify support for ICAT 4.9.0. Add new ICAT API method icat.client.Client.getVersion().

Incompatible changes and deprecations

• As a consequence of the discovery of available authenticators, the workflow during configuration need to
be changed. Until now, the beginning of a typical python-icat program would look like:

config = icat.config.Config()
# Optionally, add custom configuration variables:
# config.add_variable(...)
conf = config.getconfig()
client = icat.Client(conf.url, **conf.client_kwargs)

E.g. first the configuration variables are set up, then the configuration is applied and finally the icat.
client.Client object is created using the configuration values. With the discovery of authenticators,
the icat.config.Config object itself needs a working icat.client.Client object in order to
connect to the ICAT server and query the authenticator info. The icat.client.Client object will now
be created in the icat.config.Config constructor and returned along with the configuration values
by icat.config.Config.getconfig(). You will need to replace the code from above by:

config = icat.config.Config()
# Optionally, add custom configuration variables:
# config.add_variable(...)
client, conf = config.getconfig()

The derived configuration variable client_kwargs that was used to pass additional arguments from the con-
figuration to the Client constructor is no longer needed and has been removed.

The optional argument args has been moved from the icat.config.Config.getconfig() call to
the icat.config.Config constructor, retaining the same semantics. E.g. you must change in your
code:

config = icat.config.Config()
conf = config.getconfig(args)
client = icat.Client(conf.url, **conf.client_kwargs)

to:

config = icat.config.Config(args)
client, conf = config.getconfig()

1.4. Changelog 87

https://github.com/icatproject/python-icat/issues/11
https://github.com/icatproject/python-icat/issues/32
https://github.com/icatproject/python-icat/issues/30
https://github.com/icatproject/python-icat/issues/31


python-icat Documentation, Release 0.20.1

• Deprecate support for ICAT 4.2.*.

Note that already now significant parts of python-icat require features from ICAT 4.3 such as the JPQL like
query language. The only workaround is to upgrade your icat.server.

• Deprecate module icat.cgi.

It is assumed that this has never actually been used in production. For web applications it is recommended
to use the Python Web Server Gateway Interface (WSGI) rather then CGI.

• Deprecate the predefined configuration variable configDir.

The main use case for this variable was to be substituted in the default value for the path of an additional
configuration file. The typical usage was the definition of a configuration variable like:

config = icat.config.Config()
config.add_variable('extracfg', ("--extracfg",),

dict(help="Extra config file"),
default="%(configDir)s/extra.xml", subst=True)

This set the default path for the extra config file to the same directory the main configuration file was found
in. Using the new config variable type icat.config.cfgpath() you can replace this by:

config = icat.config.Config()
config.add_variable('extracfg', ("--extracfg",),

dict(help="Extra config file"),
default="extra.xml", type=icat.config.cfgpath)

This will search the extra config file in all the default config directories, regardless where the main configu-
ration file was found.

• The fixes for #35 and #36 require some changes in the semantics in the f and the mode argument to icat.
dumpfile.open_dumpfile(). Most users will probably not notice the difference.

Bug fixes and minor changes

• Changed the default for the icat.config.Config constructor argument ids from False to
"optional".

• Improved icat.client.Client.searchChunked(). This version is not susceptible to Issue icat-
project/icat.server#128 anymore.

• Move the management of dependencies of tests into a separate package pytest-dependency that is distributed
independently.

• #34: TypeError in the icat.client.Client constructor if setting the sslContext keyword argument.

• #35: io.UnsupportedOperation is raised if icat.dumpfile.open_dumpfile() is called
with an in-memory stream.

• #36: icat.dumpfile.DumpFileReader and icat.dumpfile.DumpFileWriter must not
close file.

• #37: TypeError is raised when writing a YAML dumpfile to io.StringIO.

1.4.15 0.12.0 (2016-10-10)

New features

• Verify support for ICAT 4.8.0 and IDS 1.7.0.

• Add methods icat.ids.IDSClient.reset() and icat.ids.IDSClient.
resetPrepared().

88 Chapter 1. Parts of the documentation

https://github.com/icatproject/python-icat/issues/35
https://github.com/icatproject/python-icat/issues/36
https://github.com/icatproject/icat.server/issues/128
https://github.com/icatproject/icat.server/issues/128
https://pypi.python.org/pypi/pytest_dependency/
https://github.com/icatproject/python-icat/issues/34
https://docs.python.org/3/library/exceptions.html#TypeError
https://github.com/icatproject/python-icat/issues/35
https://docs.python.org/3/library/io.html#io.UnsupportedOperation
https://github.com/icatproject/python-icat/issues/36
https://github.com/icatproject/python-icat/issues/37
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/io.html#io.StringIO


python-icat Documentation, Release 0.20.1

• #28: Add support for searching for attributes in class icat.query.Query .

Bug fixes and minor changes

• Sort objects in icatdump before writing them to the dump file. This keeps the order independent from the
collation used in the ICAT database backend.

• #2: for Python 3.6 (expected to be released in Dec 2016) and newer, use the support for chunked transfer
encoding in the standard lib. Keep our own implementation in module icat.chunkedhttp only for
compatibility with older Python versions.

• Improved the example script wipeicat.

• Add an example script dumprules.py.

• Add missing schema definition for the ICAT XML data file format for ICAT 4.7.

• Fix an AttributeError during error handling.

1.4.16 0.11.0 (2016-06-01)

New features

• #12, #23: add support for ICAT 4.7.0 and IDS 1.6.0. ICAT 4.7.0 had some small schema changes that have
been taken into account.

Incompatible changes

• Remove the autoget argument from icat.entity.Entity.getUniqueKey(). Deprecated since
0.9.0.

Bug fixes and minor changes

• #21: configuration variable promptPass is ignored when set in the configuration file.

• #18: Documentation: missing stuff in the module index.

• #20: add test on compatibility with icat.server.

• #24, #25: test failures caused by different timezone settings of the test server.

• Use a separate module distutils_pytest to run the tests from setup.py.

• icat.icatcheck: move checking of exceptions into a separate method icat.icatcheck.
ICATChecker.checkExceptions(). Do not report exceptions defined in the client, but not found in
the schema.

• Many fixes in the example script wipeicat.

• Fix a missing import in the icatexport.py example script.

• Somewhat clearer error messages for some special cases of icat.exception.
SearchAssertionError.

Misc

• Change license to Apache 2.0.

1.4. Changelog 89

https://github.com/icatproject/python-icat/issues/28
https://github.com/icatproject/python-icat/issues/2
https://docs.python.org/3/library/exceptions.html#AttributeError
https://github.com/icatproject/python-icat/issues/12
https://github.com/icatproject/python-icat/issues/23
https://github.com/icatproject/python-icat/issues/21
https://github.com/icatproject/python-icat/issues/18
https://github.com/icatproject/python-icat/issues/20
https://github.com/icatproject/python-icat/issues/24
https://github.com/icatproject/python-icat/issues/25
https://github.com/RKrahl/distutils-pytest


python-icat Documentation, Release 0.20.1

1.4.17 0.10.0 (2015-12-06)

New features

• Add a method icat.entity.Entity.copy().

• Implement setting an INCLUDE 1 clause equivalent in class icat.query.Query .

• Add an optional argument includes to icat.client.Client.searchMatching().

• Add a hook for a custom method to validate entity objects before creating them at the ICAT server.

• Add support for ids.server 1.5.0:

– Add icat.ids.IDSClient.getDatafileIds() and icat.ids.IDSClient.
getPreparedDatafileIds() calls.

– icat.ids.IDSClient.getStatus() allows sessionId to be None.

• Add new exception class icat.exception.ICATNotImplementedError that is supposed to be
raised by the upcoming version 4.6.0 of icat.server.

Bug fixes and minor changes

• #13: icat.client.Client.searchChunked() raises exception if the query contains a percent
character.

• #15: icatdump raises icat.exception.DataConsistencyError for DataCollectionParameter.

• #14: icat.entity.Entity.__sortkey__() may raise RuntimeError “maximum recursion
depth exceeded”.

• Allow a icat.ids.DataSelection to be created from (almost) any Iterator, not just a Sequence.
Store the object ids in icat.ids.DataSelection internally in a set rather then a list.

• Add optional arguments objindex to icat.dumpfile.DumpFileReader.getobjs() and keyindex
to icat.dumpfile.DumpFileWriter.writedata() to allow the caller to control these internal
indices.

• Add optional argument chunksize to icat.dumpfile.DumpFileWriter.writedata().

• The constructor of class icat.query.Query checks the version of the ICAT server and raises an error
if too old.

• The icat.ids.IDSClient.getIcatUrl() call checks the version of the IDS server.

• Some changes in the test suite, add more tests.

1.4.18 0.9.0 (2015-08-13)

New features

• #4: Extend icatrestore to become a generic ingestion tool.

Rename icatrestore to icatingest.

Allow referencing of objects by attribute rather then by unique key in the input file for icatingest (only in
the XML backend).

Allow adding references to already existing objects in the input file for icatingest (only in the XML back-
end).

Change the name of the root element in the input file for icatingest (and the output of icatdump) from
icatdump to icatdata (only in the XML backend).

• Implement upload of Datafiles to IDS rather then only creating the ICAT object from icatingest.

90 Chapter 1. Parts of the documentation

https://github.com/icatproject/python-icat/issues/13
https://github.com/icatproject/python-icat/issues/15
https://github.com/icatproject/python-icat/issues/14
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#list
https://github.com/icatproject/python-icat/issues/4


python-icat Documentation, Release 0.20.1

• Implement handling of duplicates in icatingest. The same options (THROW, IGNORE, CHECK, and OVER-
WRITE) as in the import call in the ICAT restful interface are supported.

• #1: add a test suite.

• #3: use Sphinx to generate the API documentation.

• Add method icat.client.Client.searchMatching().

• Add the icat.ids.IDSClient.getIcatUrl() call introduced with IDS 1.4.0.

Incompatible changes and deprecations

• The Lucene calls that have been removed in ICAT 4.5.0 are also removed from the client.

• Deprecate the use of the autoget argument in icat.entity.Entity.getUniqueKey().

Bug fixes and minor changes

• #6: icat.query.Query: adding a condition on a meta attribute fails.

• #10: client.putData: IDSInternalError is raised if datafile.datafileCreateTime is set.

• Ignore import errors from the backend modules in icatingest and icatdump. This means one can use the
scripts also if the prerequisites for some backends are not fulfilled, only the concerned backends are not
available then.

• #5, compatibility with ICAT 4.5: entity ids are not guaranteed to be unique among all entities, but only for
entities of the same type.

• #5, compatibility with ICAT 4.5: icat.client.Client.getEntityInfo() also lists createId, cre-
ateTime, modId, and modTime as attributes. This need to be taken into account in icat.icatcheck.

• The last fix in 0.8.0 on the string representation operator icat.query.Query.__str__() was not
complete, the operator still had unwanted side effects.

• Fix a bug in the handling of errors raised from the ICAT or the IDS server. This bug affected only Python 3.

• Add proper type checking and conversion for setting an attribute that corresponds to a one to many relation-
ship in class icat.entity.Entity . Accept any iterable of entities as value.

• #9: icatingest with duplicate=CHECK may fail when attributes are not strings. Note that this bug was only
present in an alpha version, but not in any earlier release version.

• Source repository moved to Git. This gives rise to a few tiny changes. To name the most visible ones:
python2_6.patch is now auto generated by comparing two source branches and must be applied with -p1
instead of -p0, the format of the icat module variable icat.__revision__ has changed.

• Review default exports of modules. Mark some helper functions as internal.

1.4.19 0.8.0 (2015-05-08)

New features

• Enable verification of the SSL server certificate in HTTPS connections. Add a new configuration variable
checkCert to control this. It is set to True by default.

Note that this requires either Python 2.7.9 or 3.2 or newer. With older Python version, this configuration
option has no effect.

• Add type conversion of configuration variables.

• Add substituting the values of configuration variables in other variables.

• Add another derived configuration variable configDir.

1.4. Changelog 91

https://github.com/icatproject/python-icat/issues/1
https://github.com/icatproject/python-icat/issues/3
https://github.com/icatproject/python-icat/issues/6
https://github.com/icatproject/python-icat/issues/10
https://github.com/icatproject/python-icat/issues/5
https://github.com/icatproject/python-icat/issues/5
https://github.com/icatproject/python-icat/issues/9


python-icat Documentation, Release 0.20.1

• Default search path for the configuration file: add an appropriate path on Windows, add /etc/icat and
~/.config/icat to the path if not on Windows.

• Add icatexport.py and icatimport.py example scripts that use the corresponding calls to the ICAT RESTful
interface to dump and restore the ICAT content.

• The constructor of icat.exception.ICATError and the icat.exception.
translateError() function are now able to construct exceptions based on a dict such as those
returned by the ICAT RESTful interface in case of an error.

Unified handling of errors raised from the ICAT and the IDS server.

Incompatible changes

• As a consequence of the unified handling of errors, the exception class hierarchy has been reviewed, with a
somewhat more clear separation of exceptions raised by other libraries, exceptions raised by the server, and
exceptions raised by python-icat respectively.

If you put assumptions on the exception hierarchy in your code, this might need a review. In particular,
icat.exception.IDSResponseError is not derived from icat.exception.IDSError any
more. icat.exception.IDSServerError has been removed.

I.e., replace all references to icat.exception.IDSServerError by icat.exception.
IDSError in your code. Furthermore, if you catch icat.exception.IDSError in your code with
the intention to catch both, errors from the IDS server and icat.exception.IDSResponseError in
one branch, replace:

try:
# ...

except IDSError:
# ...

by

try:
# ...

except (IDSError, IDSResponseError):
# ...

Bug fixes and minor changes

• The icat.query.Query class now checks the attributes referenced in conditions and includes for va-
lidity.

• Fix a regression introduced with version 0.7.0 that caused non-ASCII characters in queries not to work.

• Fix icat.exception.ICATError and icat.exception.IDSError to gracefully deal with
non-ASCII characters in error messages. Add a common abstract base class icat.exception.
ICATException that cares about this.

• Fix: the string representation operator icat.query.Query.__str__() should not modify the query
object.

• Cosmetic improvement in the formal representation operator icat.query.Query.__repr__().

1.4.20 0.7.0 (2015-02-11)

New features

• Add a module icat.query with a class icat.query.Query that can be used to build ICAT search
expressions. Instances of the class may be used in place of search expression strings where appropriate.

92 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

Numerous examples on how to use this new class can be found in querytest.py in the examples.

• Add a class method icat.entity.Entity.getNaturalOrder() that returns a list of attributes
suitable to be used in an ORDER BY clause in an ICAT search expression.

• Add a class method icat.entity.Entity.getAttrInfo() that queries the EntityInfo from the
ICAT server and extracts the information on an attribute.

• Add a method icat.client.Client.getEntityClass() that returns the icat.entity.
Entity subclass corresponding to a name.

• Add a warning class icat.exception.QueryNullableOrderWarning.

• Add an optional argument username to the icat.ids.IDSClient.getLink() method.

1.4.21 0.6.0 (2014-12-15)

New features

• Add support for ICAT 4.4.0: add new icat.entity.Entity type InvestigationGroup, role has been
added to the constraint in InvestigationUser.

• Add new API method icat.ids.IDSClient.getApiVersion() that will be introduced with the
upcoming version 1.3.0 of IDS. This method may also be called with older IDS servers: if it is not available
because the server does not support it yet, the server version is guessed from visible features in the API.

icat.ids.IDSClient checks the API version on init.

• Add new API methods icat.ids.IDSClient.isReadOnly(), icat.ids.IDSClient.
isTwoLevel(), icat.ids.IDSClient.getLink(), and icat.ids.IDSClient.
getSize() introduced with IDS 1.2.0.

• Add no_proxy support. The proxy configuration variables, http_proxy, https_proxy, and no_proxy are set in
the environment. [Suggested by Alistair Mills]

• Rework the dump file backend API for icatdump and icatrestore. As a result, writing custom dump or
restore scripts is much cleaner and easier now.

This may cause compatibility issues for users who either wrote their own dump file backend or for users
who wrote custom dump or restore scripts, using the XML or YAML backends. In the first case, compare
the old XML and YAML backends with the new versions and you’ll easily see what needs to get adapted.
In the latter case, have a look into the new versions of icatdump and icatrestore to see how to use the new
backend API.

• Add method icat.client.Client.searchChunked().

• Add method icat.entity.Entity.getAttrType().

Incompatible changes

• Move the group argument to method icat.client.Client.createRules() to the last position
and make it optional, having default None.

In the client code, replace:

client.createRules(group, crudFlags, what)

by

client.createRules(crudFlags, what, group)

• The icat.client.Client.putData() method returns the new Datafile object created by IDS rather
then only its id.

If you depend on the old behavior in the client code, replace:

1.4. Changelog 93



python-icat Documentation, Release 0.20.1

dfid = client.putData(file, datafile)

by

df = client.putData(file, datafile)
dfid = df.id

Minor changes and fixes

• The icat.client.Client.searchText() and icat.client.Client.luceneSearch()
client method have been deprecated. They are destined to be dropped from the ICAT server or at least
changed in version 4.5.0 and might get removed from python-icat in a future release as well.

The methods now emit a deprecation warning when called. Note however that Python by default ignores
deprecation warnings, so you won’t see this unless you switch them on.

• Fixed overly strict type checking in the constructor arguments of icat.ids.DataSelection and as a
consequence also in the arguments of the ICAT client methods icat.client.Client.getData(),
icat.client.Client.getDataUrl(), icat.client.Client.prepareData(), and
icat.client.Client.deleteData(): now, any Sequence of entity objects will be accepted, in
particular an icat.entity.EntityList.

• Change icat.ids.IDSClient.archive() and icat.ids.IDSClient.restore() to not to
return anything. While formally, this might be considered an incompatible change, these methods never
returned anything meaningful in the past.

• Slightly modified the == and != operator for icat.entity.Entity . Add a icat.entity.
Entity.__hash__() method. The latter means that you will more likely get what you expect when
you create a set of icat.entity.Entity objects or use them as keys in a dict.

• The module icat.eval now only does its work (parsing command line arguments and connecting to
an ICAT server) when called from the Python command line. When imported as a regular module, it will
essentially do nothing. This avoids errors to occur when imported.

• setup.py raises an error with Python 2.6 if python2_6.patch has not been applied.

• Add missing MANIFEST.in in the source distribution.

• Remove the work around the Suds datetime value bug (setting the environment variable TZ to UTC) from
icat. Instead, document it along with other known issues in the README.

• Minor fixes in the sorting of entity objects.

• Add an optional argument args to icat.config.Config.getconfig(). If set to a list of strings, it
replaces sys.argv. Mainly useful for testing.

• Add comparison operators to class icat.listproxy.ListProxy .

1.4.22 0.5.1 (2014-07-07)

• Add a module icat.eval that is intended to be run using the -m command line switch to Python. It
allows to evaluate Python expressions within an ICAT session as one liners directly from the command line,
as for example:

# get all Dataset ids
$ python -m icat.eval -e 'client.search("Dataset.id")' -s root
[102284L, 102288L, 102289L, 102293L]

• Fix an issue in the error handling in the IDS client that caused an urllib2.HTTPError to be raised
instead of an icat.exception.IDSServerError in the case of an error from the IDS server and
thus the loss of all details about the error reported in the reply from the server.

94 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

• Add specific exception classes for the different error codes raised by the IDS server.

• Fix compatibility issue with Python 3.3 that caused the HTTP method to be set to None in some IDS
methods, which in turn caused an internal server error to be raised in the IDS server.

• Fix compatibility issues with Python 3.4: some methods have been removed from class urllib.
request.Request which caused an AttributeError in the icat.ids.IDSClient.

• Fix: failed to connect to an ICAT server if it advertises a version number having a trailing “-SNAPSHOT”
in icat.client.Client.getApiVersion(). For compatibility, a trailing “-SNAPSHOT” will be
replaced by “a1” in the client.apiversion attribute.

• Suppress misleading context information introduced with Python 3 (PEP 3134) from the traceback in some
error messages. Unfortunately, the fix only works for Python 3.3 and newer.

• Make example files compatible across Python versions without modifications, such as running 2to3 on them.

1.4.23 0.5.0 (2014-06-24)

• Integrate an IDS client in the ICAT client.

• Improved icatdump and icatrestore:

– Changed the logical structure of the dump file format which significantly simplified the scripts. Note
that old dump files are not compatible with the new versions.

– Add support for XML dump files. A XML Schema Definition for the dump file format is provided in
the doc directory.

The scripts are now considered to be legitimate tools (though still alpha) rather then mere examples. Con-
sequently, they will be installed into the bin directory.

• Implicitly set a one to many relation to an empty list if it is accessed but not present in an icat.entity.
Entity object rather then raising an AttributeError. See ICAT Issue 112.

• Allow setting one to many relationship attributes and deletion of attributes in icat.entity.Entity .
Add method icat.entity.Entity.truncateRelations(). Truncate dummy relations set by
the factory in newly created entity objects.

• Cache the result from icat.client.Client.getEntityInfo() in the client.

• Add a method icat.entity.Entity.__sortkey__() that return a key that when used as a sorting
key in list.sort() allows any list of entity objects to have a well defined order. Sorting is based on the
Constraint attributes. Add a class variable icat.entity.Entity.SortAttrs that overrides this and
will be set as a fall back for those entity classes that do not have a suitable Constraint.

1.4.24 0.4.0 (2014-02-11)

• Add support for the jurko fork of Suds and for Python 3.

• Add a new method icat.client.Client.searchUniqueKey().

• Add an optional argument keyindex to method icat.entity.Entity.getUniqueKey() that is used
as a cache of previously generated keys. Remove the argument addbean. It had been documented as for
internal use only, so this is not considered an incompatible change.

• Add a new exception icat.exception.DataConsistencyError. Raise this in icat.entity.
Entity.getUniqueKey() if a relation that is required in a constraint is not set.

• Rename icat.exception.SearchResultError to icat.exception.
SearchAssertionError. SearchResultError was a misnomer here, as this exception class is very
specific to icat.client.Client.assertedSearch(). Add a new generic exception class icat.
exception.SearchResultError and derive icat.exception.SearchAssertionError
from it. This way, the change should not create any compatibility problems in client programs.

1.4. Changelog 95

https://docs.python.org/3/library/urllib.request.html#urllib.request.Request
https://docs.python.org/3/library/urllib.request.html#urllib.request.Request
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/exceptions.html#AttributeError
https://github.com/icatproject/icat.server/issues/112
https://docs.python.org/3/library/stdtypes.html#list.sort


python-icat Documentation, Release 0.20.1

• Add a check in icat.icatcheck that the icat.exception.ICATError subclasses are in sync
with icatExceptionType as defined in the schema.

• Bugfix: The code dealing with exceptions raised by the ICAT server did require all attributes in IcatExcep-
tion sent by the server to be set, although some of these attributes are marked as optional in the schema.

• Do not delete the Suds cache directory in icat.client.Client.cleanup().

• Installation: python-icat requires Python 2.6 or newer. Raise an error if setup.py is run by a too old Python
version.

• Move some internal routines in a separate module icat.helper.

• Greatly improved example scripts icatdump and icatrestore.

1.4.25 0.3.0 (2014-01-10)

• Add support for ICAT 4.3.1. (Compatibility with ICAT 4.3.2 has also been tested but did not require any
changes.)

• Implement alias names for entity attributes. This facilitates compatibility of client programs to different
ICAT versions. E.g. a client program may use rule.grouping regardless of the ICAT version, for ICAT 4.2.*
this is aliased to rule.group.

• Add a method icat.client.Client.assertedSearch().

• Add a method icat.entity.Entity.getUniqueKey().

• Add entity methods Group.getUsers() and Instrument.getInstrumentScientists().

• WARNING, incompatible change!

Changed entity methods Instrument.addInstrumentScientist() and Investigation.
addInvestigationUser() to not to create the respective user any more, but rather ex-
pect a list of existing users as argument. Renamed Group.addUser(), Instrument.
addInstrumentScientist(), and Investigation.addInvestigationUser() to
addUsers(), addInstrumentScientists(), and addInvestigationUsers() (note
the plural “s”) respectively.

In the client code, replace:

pi = investigation.addInvestigationUser(uid, fullName=userName,
search=True,
role="Principal Investigator")

by

pi = client.createUser(uid, fullName=userName, search=True)
investigation.addInvestigationUsers([pi], role="Principal Investigator")

• Work around a bug in the way SUDS deals with datetime values: set the local time zone to UTC.

• Add example scripts icatdump and icatrestore.

1.4.26 0.2.0 (2013-11-18)

• Rework internals of icat.config.

• Bugfix: icat.config.Config required a password to be set even if prompt for password was re-
quested.

• Add support for configuration via environment variables.

• Add support of HTTP proxy settings. [Suggested by Alistair Mills]

96 Chapter 1. Parts of the documentation



python-icat Documentation, Release 0.20.1

• WARNING, incompatible change! The configuration read by icat.config is not stored as attributes on
the icat.config.Config object itself, but rather icat.config.Config.getconfig() returns
an object with these attributes set. This keeps the configuration values cleanly separated from the attributes
of the icat.config.Config object.

In the client code, replace:

conf = icat.config.Config()
conf.getconfig()

by

config = icat.config.Config()
conf = config.getconfig()

• Move ConfigError from icat.config to icat.exception.

• Move GenealogyError from icat.icatcheck to icat.exception.

• Review export of symbols. Most client programs should only need to import icat and icat.config.

1.4.27 0.1.0 (2013-11-01)

• Initial version

1.4. Changelog 97



python-icat Documentation, Release 0.20.1

98 Chapter 1. Parts of the documentation



CHAPTER 2

Indices and tables

• genindex

• search

99



python-icat Documentation, Release 0.20.1

100 Chapter 2. Indices and tables



Python Module Index

i
icat.authinfo, 69
icat.cgi, 74
icat.client, 41
icat.config, 49
icat.dump_queries, 72
icat.dumpfile, 66
icat.dumpfile_xml, 70
icat.dumpfile_yaml, 71
icat.entities, 55
icat.entity, 56
icat.eval, 66
icat.exception, 58
icat.helper, 72
icat.icatcheck, 75
icat.ids, 62
icat.listproxy, 73
icat.query, 64
icat.sslcontext, 74

101



python-icat Documentation, Release 0.20.1

102 Python Module Index



Index

Symbols
-datafile-dir DATADIR

icatingest command line option, 79
-duplicate OPTION

icatingest command line option, 79
-http-proxy HTTP_PROXY

icatdump command line option, 77
icatingest command line option, 79
wipeicat command line option, 81

-https-proxy HTTPS_PROXY
icatdump command line option, 77
icatingest command line option, 79
wipeicat command line option, 81

-idsurl URL
icatingest command line option, 79

-no-check-certificate
icatdump command line option, 77
icatingest command line option, 79
wipeicat command line option, 81

-no-proxy NO_PROXY
icatdump command line option, 77
icatingest command line option, 80
wipeicat command line option, 81

-upload-datafiles
icatingest command line option, 79

-P, -prompt-pass
icatdump command line option, 77
icatingest command line option, 80
wipeicat command line option, 81

-a AUTH, -auth AUTH
icatdump command line option, 77
icatingest command line option, 80
wipeicat command line option, 81

-c CONFIGFILE, -configfile
CONFIGFILE

icatdump command line option, 77
icatingest command line option, 79
wipeicat command line option, 81

-f FORMAT, -format FORMAT
icatdump command line option, 76
icatingest command line option, 79

-h, -help
icatdump command line option, 77

icatingest command line option, 79
wipeicat command line option, 81

-i FILE, -inputfile FILE
icatingest command line option, 79

-o FILE, -outputfile FILE
icatdump command line option, 76

-p PASSWORD, -pass PASSWORD
icatdump command line option, 77
icatingest command line option, 80
wipeicat command line option, 81

-s SECTION, -configsection SECTION
icatdump command line option, 77
icatingest command line option, 79
wipeicat command line option, 81

-u USERNAME, -user USERNAME
icatdump command line option, 77
icatingest command line option, 80
wipeicat command line option, 81

-w URL, -url URL
icatdump command line option, 77
icatingest command line option, 79
wipeicat command line option, 81

_BaseException, 58
__sortkey__() (icat.entity.Entity method), 57

A
add_ids() (icat.client.Client method), 43
add_subcommands() (icat.config.BaseConfig

method), 51
add_subconfig() (icat.config.ConfigSubCmds

method), 50
add_variable() (icat.config.BaseConfig method),

50
addConditions() (icat.query.Query method), 65
addIncludes() (icat.query.Query method), 66
addInstrument() (icat.entities.InvestigationMixin

method), 55
addInstrumentScientists()

(icat.entities.InstrumentMixin method),
55

addInvestigationGroup()
(icat.entities.Investigation44Mixin method),
55

103



python-icat Documentation, Release 0.20.1

addInvestigationUsers()
(icat.entities.InvestigationMixin method),
55

addKeywords() (icat.entities.InvestigationMixin
method), 55

addUsers() (icat.entities.GroupingMixin method),
55

apiversion (icat.client.Client attribute), 42
archive() (icat.ids.IDSClient method), 63
as_dict() (icat.config.Configuration method), 50
as_dict() (icat.entity.Entity method), 57
assertedSearch() (icat.client.Client method), 44
AttrAlias (icat.entity.Entity attribute), 56
AuthenticatorInfo (class in icat.authinfo), 69
autoLogout (icat.client.Client attribute), 42
autoRefresh() (icat.client.Client method), 44
AutoRefreshRemain (icat.client.Client attribute),

42

B
Backends (in module icat.dumpfile), 68
BaseConfig (class in icat.config), 50
BeanName (icat.entity.Entity attribute), 56
boolean() (in module icat.config), 49

C
cfgfile (in module icat.config), 49
cfgpath() (in module icat.config), 49
check() (icat.icatcheck.ICATChecker method), 75
checkExceptions() (icat.icatcheck.ICATChecker

method), 75
cleanup() (icat.client.Client method), 42
cleanupall() (icat.client.Client class method), 42
Client (class in icat.client), 41
client (icat.config.Config attribute), 52
client_kwargs (icat.config.Config attribute), 53
ClientVersionWarning, 60
clone() (icat.client.Client method), 43
Config (class in icat.config), 52
ConfigError, 60
ConfigSubCmds (class in icat.config), 50
Configuration (class in icat.config), 50
ConfigVariable (class in icat.config), 50
Constraint (icat.entity.Entity attribute), 56
copy() (icat.entity.Entity method), 57
copy() (icat.query.Query method), 66
create() (icat.client.Client method), 43
create() (icat.entity.Entity method), 58
create_ssl_context() (in module

icat.sslcontext), 74
createGroup() (icat.client.Client method), 46
createMany() (icat.client.Client method), 43
createRules() (icat.client.Client method), 46
createUser() (icat.client.Client method), 46

D
DataConsistencyError, 61
DataSelection (class in icat.ids), 62

defaultsection (in module icat.config), 49
delete() (icat.client.Client method), 44
delete() (icat.ids.IDSClient method), 64
deleteData() (icat.client.Client method), 49
deleteMany() (icat.client.Client method), 44
DumpFileReader (class in icat.dumpfile), 66
DumpFileWriter (class in icat.dumpfile), 67

E
Entity (class in icat.entity), 56
EntityTypeError, 60
extend() (icat.ids.DataSelection method), 62

F
finalize() (icat.dumpfile.DumpFileWriter

method), 67
finalize() (icat.dumpfile_xml.XMLDumpFileWriter

method), 71
finalize() (icat.dumpfile_yaml.YAMLDumpFileWriter

method), 72

G
GenealogyError, 61
get() (icat.client.Client method), 44
get() (icat.entity.Entity method), 58
getApiVersion() (icat.client.Client method), 44
getApiVersion() (icat.ids.IDSClient method), 62
getAttrInfo() (icat.entity.Entity class method), 56
getAttrType() (icat.entity.Entity method), 57
getAuthenticatorInfo() (icat.client.Client

method), 44
getAuthNames() (icat.authinfo.AuthenticatorInfo

method), 70
getAuthNames() (icat.authinfo.LegacyAuthenticatorInfo

method), 70
getAuthQueries() (in module

icat.dump_queries), 72
getconfig() (icat.config.Config method), 53
getCredentialKeys()

(icat.authinfo.AuthenticatorInfo method),
70

getCredentialKeys()
(icat.authinfo.LegacyAuthenticatorInfo
method), 70

getData() (icat.client.Client method), 47
getdata() (icat.dumpfile.DumpFileReader method),

67
getdata() (icat.dumpfile_yaml.YAMLDumpFileReader

method), 71
getData() (icat.ids.IDSClient method), 63
getdata_etree() (icat.dumpfile_xml.XMLDumpFileReader

method), 71
getdata_file() (icat.dumpfile_xml.XMLDumpFileReader

method), 71
getDatafileIds() (icat.ids.IDSClient method),

63
getDataUrl() (icat.client.Client method), 48
getDataUrl() (icat.ids.IDSClient method), 63

104 Index



python-icat Documentation, Release 0.20.1

getentities() (icat.icatcheck.ICATChecker
method), 75

getEntity() (icat.client.Client method), 43
getEntityClass() (icat.client.Client method), 43
getEntityInfo() (icat.client.Client method), 44
getEntityNames() (icat.client.Client method), 44
getIcatUrl() (icat.ids.IDSClient method), 62
getInstance() (icat.entity.Entity class method), 56
getInstances() (icat.entity.Entity class method),

56
getInstrumentScientists()

(icat.entities.InstrumentMixin method),
55

getInvestigationQueries() (in module
icat.dump_queries), 72

getLink() (icat.ids.IDSClient method), 63
getNaturalOrder() (icat.entity.Entity class

method), 57
getobjs() (icat.dumpfile.DumpFileReader method),

67
getobjs_from_data()

(icat.dumpfile.DumpFileReader method),
67

getobjs_from_data()
(icat.dumpfile_xml.XMLDumpFileReader
method), 71

getobjs_from_data()
(icat.dumpfile_yaml.YAMLDumpFileReader
method), 71

getOtherQueries() (in module
icat.dump_queries), 72

getPreparedData() (icat.client.Client method),
48

getPreparedData() (icat.ids.IDSClient method),
63

getPreparedDatafileIds() (icat.ids.IDSClient
method), 63

getPreparedDataUrl() (icat.client.Client
method), 49

getPreparedDataUrl() (icat.ids.IDSClient
method), 63

getProperties() (icat.client.Client method), 44
getRemainingMinutes() (icat.client.Client

method), 44
getServiceStatus() (icat.ids.IDSClient

method), 63
getSize() (icat.ids.IDSClient method), 63
getStaticQueries() (in module

icat.dump_queries), 72
getStatus() (icat.ids.IDSClient method), 63
getTypeMap() (in module icat.entities), 55
gettypes() (icat.icatcheck.ICATChecker method),

75
getUniqueKey() (icat.entity.Entity method), 58
getUserName() (icat.client.Client method), 44
getUsers() (icat.entities.GroupingMixin method),

55
getVersion() (icat.client.Client method), 44

GroupingMixin (class in icat.entities), 55

H
head() (icat.dumpfile.DumpFileWriter method), 67
head() (icat.dumpfile_xml.XMLDumpFileWriter

method), 71
head() (icat.dumpfile_yaml.YAMLDumpFileWriter

method), 72
HTTPSTransport (class in icat.sslcontext), 74

I
icat.authinfo (module), 69
icat.cgi (module), 74
icat.client (module), 41
icat.config (module), 49
icat.config.cfgdirs (in module icat.config), 49
icat.config.flag (in module icat.config), 49
icat.dump_queries (module), 72
icat.dumpfile (module), 66
icat.dumpfile_xml (module), 70
icat.dumpfile_yaml (module), 71
icat.entities (module), 55
icat.entity (module), 56
icat.eval (module), 66
icat.exception (module), 58
icat.helper (module), 72
icat.icatcheck (module), 75
icat.ids (module), 62
icat.listproxy (module), 73
icat.query (module), 64
icat.sslcontext (module), 74
ICATChecker (class in icat.icatcheck), 75
ICATDeprecationWarning, 60
icatdump command line option

-http-proxy HTTP_PROXY, 77
-https-proxy HTTPS_PROXY, 77
-no-check-certificate, 77
-no-proxy NO_PROXY, 77
-P, -prompt-pass, 77
-a AUTH, -auth AUTH, 77
-c CONFIGFILE, -configfile

CONFIGFILE, 77
-f FORMAT, -format FORMAT, 76
-h, -help, 77
-o FILE, -outputfile FILE, 76
-p PASSWORD, -pass PASSWORD, 77
-s SECTION, -configsection

SECTION, 77
-u USERNAME, -user USERNAME, 77
-w URL, -url URL, 77

ICATError, 59
icatingest command line option

-datafile-dir DATADIR, 79
-duplicate OPTION, 79
-http-proxy HTTP_PROXY, 79
-https-proxy HTTPS_PROXY, 79
-idsurl URL, 79
-no-check-certificate, 79

Index 105



python-icat Documentation, Release 0.20.1

-no-proxy NO_PROXY, 80
-upload-datafiles, 79
-P, -prompt-pass, 80
-a AUTH, -auth AUTH, 80
-c CONFIGFILE, -configfile

CONFIGFILE, 79
-f FORMAT, -format FORMAT, 79
-h, -help, 79
-i FILE, -inputfile FILE, 79
-p PASSWORD, -pass PASSWORD, 80
-s SECTION, -configsection

SECTION, 79
-u USERNAME, -user USERNAME, 80
-w URL, -url URL, 79

ICATInternalError, 59
ICATNoObjectError, 59
ICATNotImplementedError, 59
ICATObjectExistsError, 59
ICATParameterError, 59
ICATPrivilegesError, 59
ICATSessionError, 59
ICATValidationError, 59
ids (icat.client.Client attribute), 42
IDSBadRequestError, 59
IDSClient (class in icat.ids), 62
IDSDataNotOnlineError, 59
IDSError, 59
IDSInsufficientPrivilegesError, 59
IDSInsufficientStorageError, 59
IDSInternalError, 60
IDSNotFoundError, 60
IDSNotImplementedError, 60
IDSResponseError, 61
insert() (icat.listproxy.ListProxy method), 74
InstAttr (icat.entity.Entity attribute), 56
InstMRel (icat.entity.Entity attribute), 56
InstRel (icat.entity.Entity attribute), 56
InstrumentMixin (class in icat.entities), 55
InternalError, 60
Investigation44Mixin (class in icat.entities), 55
InvestigationMixin (class in icat.entities), 55
isAccessAllowed() (icat.client.Client method),

44
isActive() (icat.cgi.Session method), 75
isDataPrepared() (icat.client.Client method), 48
isPrepared() (icat.ids.IDSClient method), 63
isReadOnly() (icat.ids.IDSClient method), 62
isTwoLevel() (icat.ids.IDSClient method), 63

K
kwargs (icat.client.Client attribute), 42

L
LegacyAuthenticatorInfo (class in

icat.authinfo), 70
ListProxy (class in icat.listproxy), 73
login() (icat.cgi.Session method), 75
login() (icat.client.Client method), 43

logout() (icat.cgi.Session method), 75
logout() (icat.client.Client method), 43

M
MetaAttr (icat.entity.Entity attribute), 56
mode (icat.dumpfile.DumpFileReader attribute), 67
mode (icat.dumpfile.DumpFileWriter attribute), 67
mode (icat.dumpfile_xml.XMLDumpFileReader

attribute), 71
mode (icat.dumpfile_xml.XMLDumpFileWriter at-

tribute), 71
mode (icat.dumpfile_yaml.YAMLDumpFileReader at-

tribute), 71
mode (icat.dumpfile_yaml.YAMLDumpFileWriter at-

tribute), 71
ms_timestamp() (in module icat.helper), 73

N
new() (icat.client.Client method), 43

O
open_dumpfile() (in module icat.dumpfile), 68

P
parse_attr_string() (in module icat.helper), 73
parse_attr_val() (in module icat.helper), 72
ping() (icat.ids.IDSClient method), 62
prepareData() (icat.client.Client method), 48
prepareData() (icat.ids.IDSClient method), 63
put() (icat.ids.IDSClient method), 64
putData() (icat.client.Client method), 47
pythonsrc() (icat.icatcheck.ICATChecker method),

75

Q
Query (class in icat.query), 64
QueryNullableOrderWarning, 60
QueryOneToManyOrderWarning, 60
QueryWarning, 60

R
refresh() (icat.client.Client method), 44
Register (icat.client.Client attribute), 42
register_backend() (in module icat.dumpfile),

68
reset() (icat.ids.IDSClient method), 63
resetPrepared() (icat.ids.IDSClient method), 63
restore() (icat.ids.IDSClient method), 63

S
search() (icat.client.Client method), 44
SearchAssertionError, 61
searchChunked() (icat.client.Client method), 44
searchMatching() (icat.client.Client method), 46
SearchResultError, 61
searchUniqueKey() (icat.client.Client method),

45

106 Index



python-icat Documentation, Release 0.20.1

SelfAttr (icat.entity.Entity attribute), 56
ServerError, 58
Session (class in icat.cgi), 75
SessionCookie (class in icat.cgi), 74
sessionId (icat.client.Client attribute), 42
setAggregate() (icat.query.Query method), 65
setAttribute() (icat.query.Query method), 66
setAttributes() (icat.query.Query method), 65
setJoinSpecs() (icat.query.Query method), 65
setLimit() (icat.query.Query method), 66
setOrder() (icat.query.Query method), 65
simpleqp_quote() (in module icat.helper), 72
simpleqp_unquote() (in module icat.helper), 72
SortAttrs (icat.entity.Entity attribute), 56
sslContext (icat.client.Client attribute), 42
startdata() (icat.dumpfile.DumpFileWriter

method), 67
startdata() (icat.dumpfile_xml.XMLDumpFileWriter

method), 71
startdata() (icat.dumpfile_yaml.YAMLDumpFileWriter

method), 72
stripCause() (in module icat.exception), 58
SubConfig (class in icat.config), 53

T
translateError() (in module icat.exception), 60
truncateRelations() (icat.entity.Entity

method), 57
typemap (icat.client.Client attribute), 42

U
u2handlers() (icat.sslcontext.HTTPSTransport

method), 74
update() (icat.client.Client method), 44
update() (icat.entity.Entity method), 58
url (icat.client.Client attribute), 42

V
validate (icat.entity.Entity attribute), 56
version() (icat.ids.IDSClient method), 62
VersionMethodError, 60

W
wipeicat command line option

-http-proxy HTTP_PROXY, 81
-https-proxy HTTPS_PROXY, 81
-no-check-certificate, 81
-no-proxy NO_PROXY, 81
-P, -prompt-pass, 81
-a AUTH, -auth AUTH, 81
-c CONFIGFILE, -configfile

CONFIGFILE, 81
-h, -help, 81
-p PASSWORD, -pass PASSWORD, 81
-s SECTION, -configsection

SECTION, 81
-u USERNAME, -user USERNAME, 81
-w URL, -url URL, 81

write() (icat.ids.IDSClient method), 63
writedata() (icat.dumpfile.DumpFileWriter

method), 68
writeobj() (icat.dumpfile.DumpFileWriter

method), 67
writeobj() (icat.dumpfile_xml.XMLDumpFileWriter

method), 71
writeobj() (icat.dumpfile_yaml.YAMLDumpFileWriter

method), 72
writeobjs() (icat.dumpfile.DumpFileWriter

method), 67

X
XMLDumpFileReader (class in icat.dumpfile_xml),

70
XMLDumpFileWriter (class in icat.dumpfile_xml),

71

Y
YAMLDumpFileReader (class in

icat.dumpfile_yaml), 71
YAMLDumpFileWriter (class in

icat.dumpfile_yaml), 71

Index 107


	Parts of the documentation
	Indices and tables
	Python Module Index
	Index

